A review of ammonia emission mitigation techniques for concentrated animal feeding operations

P.M. Ndegwaa,*, A.N. Hristovb, J. Arogoc, R.E. Sheffieldd

\begin{itemize}
\item aBiological Systems Engineering, Washington State University, PO Box 646120, Pullman, WA 99164, USA
\item bDairy and Animal Science Department, Pennsylvania State University, University Park, PA 16802, USA
\item cBiological Systems Engineering, Virginia Tech. 212 Seitz Hall, Blacksburg, VA 24061, USA
\item dBiological and Agricultural Engineering, Louisiana State University AgCenter, Baton Rouge, LA 70803, USA
\end{itemize}

\textbf{ARTICLE INFO}

Article history:
Received 11 December 2007
Received in revised form
6 March 2008
Accepted 14 May 2008
Available online 3 July 2008

Several approaches have been suggested and evaluated for reducing ammonia emissions from excreted animal manure: reducing nitrogen excretion through dietary manipulation, reducing volatile ammonia in the manure to stop ammonia loss, and segregating urine from faeces to reduce contact between urease and urine. When urine–faeces segregation is not an option, urease inhibitors can also be used to reduce or eliminate the hydrolysis of urea into ammonia. Methods for reducing the more volatile ammonia in manure include the reduction of pH, which shifts the equilibrium in favour of ammonium over ammonia; use of other chemical additives that bind ammonium-N; and the use of biological nitrification–denitrification to convert ammonium into non-volatile N-species such as nitrite, nitrate, or gaseous nitrogen. Other methods for mitigating ammonia emissions target emitting surfaces, and include capturing air (using physical covers) and treating the captured air to remove ammonia (using bio-filters or bio-covers, and scrubbers), and direct manure injection or incorporation into the soil. Manure collection facility designs and appropriate facility management are also essential for abating ammonia emissions. This paper provides a review of these approaches in the context of concentrated animal feeding operations (CAFOs).

© 2008 IAgrE. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Ammonia emitted from concentrated animal feeding operations (CAFOs) in the USA may soon be subjected to state and federal regulations to protect air resources. Data for estimating emissions to the atmosphere from such facilities are being collected from an ongoing National Air Emission Monitoring Study (NAEMS) funded by the Agricultural Air Research Council, a non-profit organisation that receives its funds from livestock industry groups, and overseen by the US Environmental Protection Agency (EPA) Office of Air Quality Planning and Standards. There is a need to identify and develop practices and technologies that will assist producers in mitigating NH\textsubscript{3} emissions, not only to enable CAFOs to meet regulatory requirements but also for livestock producers to act as good environmental stewards.

Ammonia volatilisation is one of the pathways for N loss from animal feeding operations. Ammonia volatilisation is a critical issue because not only does it represent a loss of fertiliser value and but it can adversely impact the environment. Ammonia can also be deposited from the atmosphere and may be beneficial to plants as a nutrient source for...
growth but when excess N is deposited in N-sensitive ecosystems, this may impact the ecosystem negatively. Potential consequences associated with exceeding threshold concentrations of both oxidised and reduced forms of N in the environment include: (1) respiratory diseases caused by exposure to high concentrations of fine particulate aerosols (PM$_{2.5}$); (2) nitrate contamination of drinking water; (3) eutrophication of surface water bodies resulting in harmful algal blooms and decreased water quality; (4) vegetation or ecosystem changes due to higher concentrations of N; (5) climatic changes associated with increases in nitrous oxide (N$_2$O); (6) N saturation of forest soils; and (7) soil acidification due to increased concentrations of both oxidised and reduced forms of N in the environment.

The objective of this paper is to review the state of the science for mitigating N$_3$H emissions from animal feeding operations and to summarise the effectiveness of current mitigation strategies. Strategies for reducing N$_3$H losses from CAFOs (Table 1) are directed towards: (1) reducing N$_3$H or N$_4$H$_3$ emissions or collect gas; (2) physical containment of N$_3$H or N$_4$H$_3$ after their formation; and (3) reducing volatile N species. Some specific potential control strategies for N$_3$H emission from animal production facilities include changing animal diet, redesigning or renovating barns, cleaning the exhaust air from buildings, treating manure, and improving the application of manure to land. In practice, to achieve adequate N$_3$H volatilisation abatement in animal production operations, combinations of these control strategies are used.

Table 1 – Summary of ammonia abatement strategies in concentrated animal feeding operations (Arogo et al., 2006)

<table>
<thead>
<tr>
<th>Source or location</th>
<th>Excreted manure and urine</th>
<th>Confinement facilities</th>
<th>Treatment and storage</th>
<th>Land application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control practice</td>
<td>Reduce N excreted by reduced protein diets or improved balance of amino acids</td>
<td>Minimise emitting surface area</td>
<td>Cover to reduce emissions or collect gas</td>
<td>Injection or incorporation into soil soon after application</td>
</tr>
<tr>
<td></td>
<td>Dietary electrolyte balance, affecting urinary pH</td>
<td>Remove manure frequently (belt transport, scrape, or flush)</td>
<td>NH$_3$ stripping, absorption, and recovery</td>
<td>Application method to reduce exposure to air (e.g. low-pressure irrigation near surface, drag, or trail hoses)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filter exhaust air (bio-scrubbers, biofilters, or chemical scrubbers)</td>
<td>Chemical precipitation e.g. struvite</td>
<td>Acidifying manure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manure amendments (acidifying compounds, organic materials, enzymes, and biological additives)</td>
<td>Biological nitrification (aerobic nitrification)</td>
<td>Acidifying manure</td>
</tr>
</tbody>
</table>

2. **Reduction of nitrogen excretion**

Minimising nitrogen excretion, which can be achieved through dietary modifications, is naturally the first line of defence in curbing N$_3$H emissions from livestock operations (Satter et al., 2002). Available research data indicate that diets fed to animals have profound effects on N$_3$H emissions from excreted manure. Feeding ruminants with excess dietary protein, diets with imbalanced amino acids or diets without adequate energy needed for ruminal fermentation result in increased urinary and faecal N losses, which consequently increases N$_3$H emissions from manure.

In non-ruminants (e.g. pigs), N$_3$H losses have been reduced by either shifting N excretion from urine to faeces by increasing fibre in the feed or reducing the N content in the diet (Canh et al., 1997, 1998b). Several reports indicate that reducing crude protein (CP) in pig diets and supplementing with amino acids can reduce N excretion by 28–79% from the manure. This is based on an average of 8% reduction in N excretion per unit of CP reduction (Kerr, 1995; Turner et al., 1996; Hobbs et al., 1996; Canh et al., 1998a). Panetta et al. (2006) reported decreased N$_3$H emission rates from 2.46 to 1.05 mg min$^{-1}$ with decreasing dietary CP levels from 17.0% to 14.5%. Similarly, O’Connell et al. (2006) observed increased N$_3$H emissions from slurry from pigs fed a 22% CP diet compared with a 16% diet. For broiler and layer chickens, reduced protein diets have resulted in reduced N excretion (Jacob et al., 2000). Thus, with some few notable exceptions (McGinn et al., 2002; Clark et al., 2005), reducing dietary CP results in significant reductions in N$_3$H loss from pig facilities (Turner et al., 1997; Otto et al., 2003; Hayes et al., 2004; Velthof et al., 2005) and poultry operations (Ferguson et al., 1998; Nahm, 2003). Other strategies such as supplementing the diet with zeolite (Kim et al., 2005), antibiotics and probiotics (Han and Shin, 2005), vegetable oil (Leek et al., 2004), plant extracts (rich in tannins and saponins; Colina et al., 2001), and exogenous enzymes (Smith et al., 2004; O’Connell et al., 2006) have been used with varying success to reduce N$_3$H losses from pig and cattle manure. In practice efforts to reduce N$_3$H emissions must be balanced with animal performance to determine optimum protein concentrations and forms in the diet (Cole et al., 2005; Panetta et al., 2006).

In ruminants (e.g. cattle), diet composition can also have significant effects on urinary excretion of urea and...
consequently the losses of NH₃ from manure and the overall efficiency of utilisation dietary N (Klopfenstein et al., 2002; Satter et al., 2002). Generally, ruminants are relatively inefficient at utilising of dietary N. The efficiency of transfer of feed N into milk protein N (MNE) is on average 25 ± 0.1%, with a minimum and a maximum of 14% and 40%, respectively (Hristov et al., 2004a), the bulk of the remaining N being lost to the environment via urine and faeces. Within limits, urinary N losses from dairy cows linearly decrease with decreasing dietary CP levels without affecting milk and milk protein yields and composition; a MNE of 36% was achieved with the lowest CP (13.5%) in the study of Olmos Colmenero and Broderick (2006). Cows fed 15.0–18.5% CP diets produced similar milk yields (32–39 kg day⁻¹) while simultaneously increasing N excretion and urinary N proportion (Groff and Wu, 2005). Reduction in the excretion of urinary N from dairy cows can mainly be achieved by reducing N intake in form of ruminally degradable protein (RDP); Kebreab et al., 2002). Using a combination of predictive equations (urine volume) and chemical analyses (urine composition), de Boer et al. (2002) demonstrated the importance of the ruminal N balance (referred to as the OEB value in the Dutch System) in reducing N losses from dairy cows. Increasing OEB from 0 to 1000 g cow⁻¹ day⁻¹ resulted in a linear increase in urinary N excretions. Feeding excess RDP resulted in greater ruminal N and milk urea N concentrations and increased urinary N losses (by 27%; Hristov et al., 2004b). Decreasing CP in the diets fed to cows (17–15% CP, ruminally undegradable protein (RUP) of 5.5–7.3) in mid or late lactation (14–12.5% CP) can reduce the cost of the diet and waste N excreted from cows. However, early lactating dairy cows need sufficient dietary RUP. After peak milk and DMI, CP and especially RUP requirements decline with declining milk production (Kalscheur et al., 1999). Using ruminally protected amino acids enables an efficient use of low-CP diets for production purposes. With ruminally protected methionine (up to 25 g day⁻¹), milk yield was maintained and MNE increased from 26% to 34% as dietary CP decreased from 18.6% to 14.8% (Broderick, 2005). Methionine supply to low (13%)-CP diets decreased the proportion of urinary N in the total excreta N (Broderick et al., 2000). Carbohydrate level and availability in the diet can also have a significant effect on ruminal N utilisation and consequently urinary urea output. Increasing the dietary net energy of lactation concentration from 6.48 to 6.77 MJ·kg⁻¹·d⁻¹ increased urea N excretion and increased MNE (from 25% to 30%, respectively), while increasing the dietary CP level from 15.1% to 18.4% had an opposite effect by increasing urinary urea N excretion and decreasing MNE (Broderick, 2003).

Dietary CP levels and the effects on urinary urea excretion are directly related to NH₃ emissions from cattle manure. Smits et al. (1995) fed dairy cows two diets differing in ruminally available protein (OEB; 40 vs. 1060 g day⁻¹) and reported a significant increase in urinary urea-N concentrations and NH₃ emissions from manure (by 39%) with the high-OEB diet. Kulling et al. (2001) demonstrated that at 17.5% CP in the diet, N losses from manure after 7 weeks of storage were from 21% (slurry) to 108% (urine-rich slurry; urine to faeces ratio of 9:1) greater than the N losses from manure from cows fed 12.5% CP, with respective NH₃ emissions rates of 163 and 42 μg·m⁻²·s⁻¹. Low-protein diets (13.5–14% CP) fed to dairy cows resulted in significantly lower NH₃ release from manure compared with the high-CP (15–19%) diets (Frank and Swensson, 2002; Frank et al., 2002). Similar results were reported for feedlot cattle (Cole et al., 2005; Todd et al., 2006). For example, decreasing the CP content of the diets of finishing cattle from 13% to 11.5% reduced daily NH₃ flux by 28% (Todd et al., 2006). In summary, reducing CP in beef cattle diets is a practical and cost-effective way of reducing NH₃ emissions from feedlots.

Ammonia volatilisation is directly related to the proportion of aqueous NH₃ in the total ammoniacal-N (TAN). In general, at a constant temperature pH determines the equilibrium between NH₄⁺ and NH₃ with a lower pH favouring the NH₄⁺ form and hence lower potential of NH₃ volatilisation. Thus, low urinary pH may be a key factor for reducing NH₃ emissions from cattle manure. Various dietary treatments can decrease urinary pH (Stockdale, 2005). Anionic salts (Tucker et al., 1991; Bowman et al., 2003; Mellau et al., 2004) and high fermentable carbohydrate levels (Mellau et al., 2004; Andersen et al., 2004) can reduce urinary pH to below 6.0. In non-ruminants, diet acidification with organic (benzoic) acids (Martin, 1982) or Ca and P salts (Kim et al., 2004) reduced urinary pH and NH₃ emissions from pig manure (Canh et al., 1997, 1998a, b).

3. Reduction of volatile nitrogen

The volatilisation of ammonia from manure is predominantly influenced by the concentrations of unionised NH₃ and ionised NH₄⁺ in solution if environmental factors are constant. Therefore, a rational way of reducing NH₃ volatilisation is to reduce the concentrations of these volatile N species. Five common approaches used to reduce volatile N include: urine–faeces segregation, inhibition of urea hydrolysis, pH reduction, binding ammonium, and bioconversion to non-volatile N species.

3.1. Urine–faeces segregation

In general, surplus and inefficient utilisation of crude protein or amino acids in livestock diets is the source of N in urine and faeces. The majority of N (as much as 97%) is excreted in the form of urea in the urine of cows or pigs and in the forms of organic N in the faeces (McCrory and Hobbs, 2001). In a matter of hours to a few days following excretion, urea is converted to NH₃ by the enzyme urease, which is found in the faeces but not in the urine (Beline et al., 1998). The NH₃ is subject to volatilisation from manure depending on the pH conditions. In contrast, the breakdown of complex organic N forms in faeces occurs more slowly, requiring months or even years to complete. In both cases, N is converted to either NH₃ or NH₄⁺ at low pH or NH₃ at high pH. This is the basis of the segregation of faeces and urine immediately upon excretion of either so that urease enzymes in the faeces have reduced contact with the urea in urine. This concept has been tested in two ways. One method uses a conveyor belt to separate urine and faeces, with urine flowing into a pit, while the faeces left on the belt are conveyed into a separate collection.
pit (Lachance et al., 2005; Stewart et al., 2004). The other method drains urine away from faeces into a urine pit immediately after discharge using appropriate floor designs while the faeces are scraped or washed into a separate faeces pit (von Bernuth et al., 2005; Swierstra et al., 2001, 1995; Braam et al., 1997a, 1997b).

The efficacy of urine–faeces segregation in abating NH₃ emissions from animal manures is summarised in Table 2. Segregation of urine from faeces can achieve as much as a 99% reduction in NH₃ emissions in laboratory studies (Panetta et al., 2004). However, pilot- and full-scale urine–faeces segregation has proved to be less effective. Several researchers have evaluated a conveyor belt system (Lachance et al., 2005; Stewart et al., 2004). Lachance et al. (2005) compared the performance of three urine–faeces separation systems (belt, net, V-shaped scraper) in pig grower-finisher housing. Without the separation process, removing the manure every 2–3 days significantly reduced NH₃ emissions by 46%, compared to the 8-week removal in the control. Using the belt or the net and manure removal within a storage period of 2–3 days, the separation of the urine and faeces directly under slats resulted in a 49% reduction of NH₃ emissions; this practice was not significantly different from the former system (i.e. not separating urine and faeces but removing the manure every 2–3 days). Stewart et al. (2004) also evaluated an inclined conveyor belt used directly as a dunging area in a pig finisher housing. The faeces were then scraped to one end of the alley. The average NH₃ emission in this system was 47% lower than a conventional grower-finisher system with a pit plug design.

Faeces–urine separation has also been effective using various floor designs. Swierstra et al. (2001) investigated pre-cast concrete floors with grooves and a manure scraper in a cow barn. The urine drained along the grooves and through perforations in the grooves spaced about 1 m apart. The perforations were opened and closed to drain urine directly into a slurry pit below and to drain urine at one end of the alley. The faeces were then scraped to one end of the alley. The floor system was constructed in one compartment of a mechanically ventilated experimental building, while in another compartment, a traditional slatted floor served as a control treatment. Ammonia emissions in the test compartment with open and closed perforations were reduced by 46% and 35% compared with the control treatment.

A similar system utilising a V-shaped pit floor with an adapted scraper installed beneath the slatted floor of pig pens was evaluated by von Bernuth et al. (2005). Faeces on the pit floor slope were scraped to a collection point after the liquid, including urine, had drained to a holding tank via a central pipe. Ammonia concentration in ambient air did not exceed 7.5 ppm in the pens throughout the monitoring period. Braam et al. (1997b) evaluated mitigation of NH₃ emission from similar V-shaped solid floors with a gutter at the bottom of the V-groove to drain urine in cow houses, with and without water spraying. Ammonia emission from the system without spraying water was reduced by 50% on average compared with a control. In addition, NH₃ emission was further reduced by an average of 65% when water was sprayed at a rate of 6 l cow⁻¹ day⁻¹ following scraping with a frequency of 12 times per day. Swierstra et al. (1995) evaluated a slatted floor versus a solid sloping floor with a central gutter with or without a finish in cow barn. The emissions from inclined solid floors were about 50% of the emission of the conventional slatted floors, and floor surface finish did not significantly affect the emissions.

A similar study by Braam et al. (1997a) also evaluated a traditional slatted floor and two solid floor systems; one of the latter was sloped (3%) and drained urine into a urine-gutter while the other was not inclined at all. Both the solid floors were either highly scraped (96 times a day) or normally scraped (12 times a day). The non-sloped solid floor scraped normally had the same NH₃ emission as the slatted floor, while the sloped solid floor, also normally scraped, further reduced NH₃ emission by 21% over the other two systems. Increasing scraping to 96 from 12 times day⁻¹ decreased the emission of NH₃ by only 5%, a level which may not economically justify the extra scraping efforts.

All the urine–faeces segregation methods evaluated and reviewed in this paper have been shown to reduce NH₃ emissions from livestock barns by about 50% compared to the conventional manure handling systems (mixed urine–faeces systems). In addition, some limited flushing following faeces scraping from the sloped floors further significantly reduces NH₃ emissions. In conclusion, the critical factors that need to be considered in the choice of the method for separating urine from faeces are the cost of installation, the level of maintenance, and the ease of use versus cost of operation.

3.2. Urease inhibitors

The enzyme urease found in the faeces rapidly hydrolyses urea and uric acid into NH₄⁺ when urine is mixed with the faeces (Belin et al., 1998). However, urease inhibitors can

<table>
<thead>
<tr>
<th>Animal species</th>
<th>Segregation method</th>
<th>Emission reduction (%)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pig</td>
<td>Laboratory studies</td>
<td>99</td>
<td>Panetta et al. (2004)</td>
</tr>
<tr>
<td>Pig</td>
<td>Conveyor belt</td>
<td>47–49</td>
<td>Lachance et al. (2005), Stewart et al. (2004)</td>
</tr>
<tr>
<td>Cattle</td>
<td>Pre-cast grooves in concrete floor</td>
<td>46</td>
<td>Swierstra et al. (2001)</td>
</tr>
<tr>
<td>Cattle</td>
<td>V-shaped pit floor with gutter at the V</td>
<td>50–65</td>
<td>Braam et al. (1997a)</td>
</tr>
<tr>
<td>Cattle</td>
<td>Sloped (3%) solid floor</td>
<td>21</td>
<td>Braam et al. (1997b)</td>
</tr>
</tbody>
</table>
block this hydrolysis and reduce NH3 emissions from the manure.

In laboratory experiments, two urease inhibitors, cyclohexylphosphoramide triamide (CHPT) and phenyl phosphorodiamidate (PPDA), have been shown to successfully control urea hydrolysis in typical cattle and pig slurries (Varel, 1997). At dosages of 10 mg l−1, both inhibitors stopped the hydrolysis of urea in cattle and pig waste for 4–11 days. In contrast, hydrolysis of urea in untreated cattle or pig waste (i.e. control) was complete within 1 day. A weekly addition of the inhibitors was the most effective method of preventing urea hydrolysis. Weekly additions of 10, 40, and 100 mg of PPDA per litre of cattle waste (5–6 g urea l−1) prevented 38%, 48%, and 70% of the urea, respectively, from being hydrolysed during a period of 28 days. For the pig waste (2 × 5 g [urea] l−1), the same PPDA concentrations prevented 72%, 92%, and 92%, respectively, of the urea from being hydrolysed during the same study period. The results of these experiments provide technical strategies for significant control of NH3 emissions from livestock facilities while increasing the fertiliser value by improving the N:P ratio.

Another laboratory study was conducted to evaluate the effect of the rate and frequency of urease inhibitor application on NH3 emissions from simulated beef cattle feed-yard manure surfaces (Parker et al., 2005). The urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) was applied at rates of 0, 1, and 2 kg ha−1, at 8-, 16-, and 32-day frequencies, and with or without simulated rainfall. Synthetic urine was added every 2 days to the manure surface. This urease inhibitor, applied every 8 days was most effective, with the 1 and 2 kg NBPT ha−1 treatments resulting in 49–69% reduction in NH3 emission rates, respectively. According to the authors, the 8-day, 1 kg NBPT ha−1 treatments had the most promising benefit/cost ratios, ranging between 0.48 and 0.60. Although the technical and economic potentials of use of NBPT for reducing NH3 emissions in beef cattle feed yard were demonstrated, the authors cautioned that because of possible build-up of urea in the pen surfaces, higher NBPT application rates may be necessary with time. In an earlier study, Varel et al. (1999) reported accumulation of urea, less concentration of TAN, and more concentrations of total-N in cattle feedlot manure when 20 mg [NBPT] kg−1 of manure was applied weekly for 6 weeks compared with control. However, Panetta et al. (2004) reported contradictory results when NBPT was applied to pig slurry in laboratory studies. In these laboratory studies, additions of single (76 μl l−1) and double (152 μl l−1) dosages of NBPT increased NH3 emissions by 50% and 140% compared with the control.

Although use of urease inhibitors has appeared promising in laboratory studies, no case studies were found in the literature for the use of these additives in the control of NH3 emissions in full-scale CAFOs. The lack of adoption of urease inhibitors may be attributed to the unknown effects of these chemicals on the crops or pastures where the manure is eventually applied as fertiliser.

3.3 Reduction of manure pH

Ammonia volatilisation is directly proportional to the proportion of non-ionised aqueous NH3 in the TAN. When the temperature is held constant, pH determines the equilibrium between NH4+ and NH3 in aqueous systems. A lower pH leads to a lower proportion of aqueous NH3 and, therefore, to a lower potential of NH3 volatilisation. Acidification of animal manure to mitigate losses of NH3 relies on this basic principle. The greatest increase in NH3 release takes place between a pH of 7 and 10: NH3 volatilisation decreases below pH 7, but around a pH of 4.5, there is almost no measurable free ammonia (Hartung and Phillips, 1994).

Past studies have clearly demonstrated the efficacy of pH reduction in the mitigation of NH3 volatilisation from livestock manure. The results of these studies are summarised in Table 3. Acidification of pig and cattle slurries from a pH of 8 to a pH of 4.6 using H2SO4 reduced NH3 emissions progressively and completely stopped NH3 volatilisation at a pH of 5 in pig slurries and at a pH of 4 in cattle slurries (Molloy and Tunney, 1983). Jensen (2002) maintained a pH of 5.5 using H2SO4 in pig manure in full-scale sow-confinement buildings with slatted floors and under-the-floor manure pits. These researchers reported reduction in the ambient concentrations of the NH3 by about 75–90%, while the weight of the pigs increased by 1074 g day−1 during the study period compared to the pigs in the control buildings.

In a similar study, Stevens et al. (1989) used H2SO4 to acidify cow and pig slurries to pHs of 5.5 and 6.0, respectively. Under these pH conditions, NH3 volatilisation was effectively reduced by 95% in the lab and by 82% in the field. Similar studies (Frost et al., 1990), using sulphuric acid to acidify whole cattle slurry to a pH of 5.5, reduced NH3 volatilisation by 85%. Al-Kanani et al. (1992) in laboratory experiments similarly reported NH3 loss reduction of 75% when sulphuric acid was applied to pig manure. Somewhat lower NH3 loss reductions (14–57%) were reported by Pain et al. (1990) when sulphuric acid was used to lower the pH of cattle slurry to about 5.5. Husted et al. (1991) investigated the use of hydrochloric acid (HCl) in the acidification of stored cattle slurry, and noted that the addition of 240 mEq [HCl]−1 resulted in a reduction of the potential NH3 loss by as much as 90% compared to the control. SaJey et al. (1983) reported a reduction of about 50% in NH3 loss using 85.2% Certified grade phosphoric acid at the estimated stoichiometric ratio, within 28 days of dairy cattle manure storage. Al-Kanani et al. (1992) reported a significantly greater (about 90%) reduction in NH3 loss using the same phosphoric acid concentration on pig manure. Phosphoric acid, however, adds P concentration in the manure, which is undesirable. Some of the weaker acids such as propionic and lactic acids are just as effective as the strong acids, and have been observed to reduce NH3 emissions by as much as 90% when the pH of the manure is maintained at 4.5 (Parkhurst et al., 1974).

Other researchers have investigated the use of other acidifying additives (e.g. aluminium potassium sulphate or alum, ferric chloride, sodium hydrogen sulphate, and calcium chloride) to reduce NH3 emissions from livestock manure (Li et al., 2006; Armstrong et al., 2003; Shi et al., 2001; Kithome et al., 1999; Al-Kanani et al., 1992; Husted et al., 1991; Witter and Kirchmann, 1989a; Mackenzie and Tomar, 1987; Molloy and Tunney, 1983). Although most of these additives effectively reduce pH, they are generally not as effective in reducing NH3 losses as the strong acids because, unlike their counterparts, they cannot maintain stable pH conditions.
Li et al. (2006) reported an 89% reduction in NH₃ volatilisation when alum was applied at the rate of 2 kg [liquid aluminium sulphate] m⁻²[surface area]. Armstrong et al. (2003) observed that application of liquid alum equivalent to 0.5, 1.0, and 1.5 kg [aluminium sulphate] m⁻² of broiler litter surface was effective at maintaining in-house NH₃ concentrations at below 25 ppm for 2, 3, and 3 weeks of the grow-out, respectively. Shi et al. (2001) investigated the efficacy of alum on beef cattle manure. Compared to the control, NH₃ emission reduction during 21 days of monitoring was 91.5% at 0.45 kg ha⁻¹ alum and 98.3% at 0.9 kg ha⁻¹ alum. The advantage of using alum to reduce NH₃ emissions is the reduction in soluble phosphorus and the reduced potential for phosphorus run-off or leaching.

Investigations by Witter and Kirchmann (1989a) on the efficacy of calcium and magnesium salts on NH₃ loss during aerobic treatment revealed that the efficiencies of most of these salts ranged between 85% and 100% within 2–3 weeks and between 23% and 52% by the seventh week of incubation. Shi et al. (2001) evaluated the efficacy of CaCl₂ in reducing NH₃ emissions from beef cattle manure in the laboratory. Compared to the control, 21 days after application NH₃ emissions were reduced by 71.2% and 77.5% at 4500 and 900 kg ha⁻¹ [CaCl₂] application. Calcium chloride was less effective than alum at the same application rates. Witter (1991) examined NH₃ volatilisation following the addition of CaCl₂ to fresh and anaerobically stored manure before land application of the respective slurries. Within 48 h after application, CaCl₂ reduced NH₃ loss by 73% in the fresh manure and by 8% in the anaerobically digested manure. Kithome et al. (1999) reported a 10% decrease in NH₃ volatilisation with the addition of 20% CaCl₂ to poultry manure. This is similar to the maximum 15% NH₃ emission reduction reported by Husted et al. (1991) achieved by addition of 300–400 mEq [CaCl₂]¹⁻¹ to cattle slurry. Calcium chloride is thus only suitable for reducing NH₃ loss in poultry housing, and may not be suitable for reducing NH₃ loss from land-applied slurries that have previously been stored under anaerobic conditions. Al-Kanani et al. (1992) reported a significant reduction in pH and NH₃ emission (87%) when monocalcium phosphate monohydrate (MCPM) was applied to cattle manure. Mackenzie and Tomar (1987) also investigated addition of MCPM to liquid pig manure with and without aeration. A decrease in pH was observed with addition of MCPM, but the pH increased when addition of salt ceased. During subsequent aeration, total nitrogen (TN) decreased significantly in the control manure, while no significant change was observed in the TN in the manure with MCPM.

Overall, strong acids tested for reducing slurry pH are more cost-effective than the weaker acids and acidifying salts, but are more hazardous for use on the farm than the latter. Thus, although the acidifying salts and other weaker acids may be less effective than strong acids, they are non-hazardous and relatively low cost, which increases their suitability for on-farm use.

3.4. Ammonium binding

This category of substances has a high affinity for binding onto NH₄⁺ ions thus reducing NH₃ volatilisation through decreased concentration of free NH₄⁺ ions. The methods of ammonia binding in some cases are not well understood. A summary of the performance of these substances is provided in Table 4.

Zeolite is a cation-exchange material, which, due to its crystalline-hydrated properties resulting from its infinite 3-dimensional structure, has a high affinity and selectivity for NH₄⁺ ions (Mumpton and Fishman, 1977). A layer of 38% zeolite placed on the surface of composting poultry manure reduced NH₃ losses by 44% (Kithome et al., 1999). An earlier

<table>
<thead>
<tr>
<th>Animal species</th>
<th>Agent or substance</th>
<th>Emission reduction (%)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle and pig</td>
<td>Sulphuric acid</td>
<td>14–100</td>
<td>Molloy and Tunney (1983), Jensen (2002), Stevens et al. (1989), Frost et al. (1990), Al-Kanani et al. (1992), Pain et al. (1990)</td>
</tr>
<tr>
<td>Cattle</td>
<td>Hydrochloric acid</td>
<td>90</td>
<td>Husted et al. (1991)</td>
</tr>
<tr>
<td>Cattle and pig</td>
<td>Phosphoric acid</td>
<td>50</td>
<td>Safley et al. (1983)</td>
</tr>
<tr>
<td>Pig</td>
<td>Phosphoric acid</td>
<td>90</td>
<td>Al-Kanani et al. (1992)</td>
</tr>
<tr>
<td>Broiler</td>
<td>Alum</td>
<td>89</td>
<td>Li et al. (2006)</td>
</tr>
<tr>
<td>Cattle</td>
<td>Alum</td>
<td>91–98</td>
<td>Shi et al. (2001)</td>
</tr>
<tr>
<td>Cattle</td>
<td>Calcium chloride</td>
<td>71–78</td>
<td>Shi et al. (2001), Witter (1991)</td>
</tr>
<tr>
<td>Poultry and cattle</td>
<td>Calcium chloride</td>
<td>10–15</td>
<td>Kithome et al. (1999); Husted et al. (1991)</td>
</tr>
<tr>
<td>Cattle</td>
<td>Monocalcium phosphate monohydrate</td>
<td>87</td>
<td>Al-Kanani et al. (1992)</td>
</tr>
</tbody>
</table>
study by Witter and Kirchmann (1989b) investigating the efficacy of zeolite on the reduction of NH₃ loss from poultry manure during aerobic incubation reported an insignificant 1.5% reduction in NH₃ loss when mixed with manure in the ratio of 1:4. Nakae et al. (1981) observed a reduction of up to 35% NH₃ loss by addition of 5 kg m⁻² of zeolite to broiler litter. Portejoie et al. (2003) investigated reduction of NH₃ loss in pig manure during storage and land application using zeolite, and reported a 71% reduction in NH₃ emissions. Li et al. (2006) evaluated the efficacy of zeolite in reducing NH₃ emissions from fresh poultry manure in laboratory experiments. Application of typical medium rates of 5% (w/w) zeolite reduced NH₃ emission by 81%. Zeolite appears to be more effective for reduction of NH₃ emission in animal slurries and liquid manures than in the solid poultry manures.

Two other additives in this category evaluated for abatement of NH₃ emissions in livestock manures are sphagnum moss (Sphagnum fuscum peat) and yucca plant extracts (saponins). Al-Kanani et al. (1992) compared the efficacy of several amendments on liquid hog manure and concluded that sphagnum moss was just as effective as the strong acids (reducing NH₃ volatilisation by as much as 99%), although it did not lower the pH to the same levels as the acids. Barrington and Moreno (1995) observed that a 20 mm depth cover of floating sphagnum reduced NH₃ loss by as much as 80%. Similar results were reported by other researchers (Al-Kanani et al., 1992), but Witter and Kirchmann (1989b) reported a somewhat lower (24%) reduction in NH₃ emissions when sphagnum moss, mixed in the ratio of 1:4, was used in poultry manure during aerobic incubation. This product also seems to be more effective on the animal slurries than on the solid poultry manure in the same way as zeolite. Kemme et al. (1993) reported an NH₃ loss reduction of 23% when saponins were applied to pig slurries. Panetta et al. (2004) reported similar results when these extracts were applied to pig slurry in laboratory studies. In this category, saponins do not seem to be as effective in mitigating NH₃ emissions as either zeolite or peat moss.

A host of other additives disguised by brand names, presumably to protect commercial interests of their inventors, have also been evaluated. Heber et al. (2000) evaluated a commercial manure additive (Alliance™) developed by Monsanto EnvironChem (St. Louis, MO.) to improve air quality in pig buildings. Alliance™ was sprayed onto the manure stored in pits underneath slatted floors. Compared to the control, this additive reduced NH₃ emissions by 24%, but also further diluted the manure by 20%. The authors estimated the cost of this additive at $1.38 pig-space⁻¹ year⁻¹ or $0.50 per marketed pig based on 135-day growth cycles, and a product cost of $3.431⁻¹, and noted that because of the modest reduction in NH₃ emission, this additive may not be cost-effective to most producers. Amon et al. (1997) compared the effectiveness of another commercial additive (De-Odorase™) to a control (no additive) in broiler production. This product (De-Odorase™) significantly reduced NH₃ emission by 50% over the control. It is important for producers to ensure that the effectiveness of the respective additives has been scientifically verified by independent and reputable institutions before they adopt them for use in their facilities.

In summary, amongst ammonia binders, zeolite seems to be more effective for reduction of NH₃ emissions from animal slurries and liquid manures than in solid poultry manures. Sphagnum moss, like zeolite, also seems to be more effective on the animal slurries than on the solid poultry manure. Saponins do not appear to be as effective in mitigating NH₃ emissions as either zeolite or peat moss. In general, large quantities of these additives are required, and in most cases (with additives such as the acid/acidic salts), precautions must be taken to safeguard the safety of livestock and farm workers. In addition, use of acids may result not only in an undesirable increase in the mineral content of the manure/litter but also in the corrosion of equipment and structures. It is important to determine appropriate application methods to ensure that these additives are most effective.

3.5. **Biological treatments**

Biological treatment processes are either based on the assimilation and immobilisation of volatile N or the transformation...
of volatile N into non-volatile inorganic N. The former approaches are geared towards recovering N products from liquid animal waste and include the production of single cell proteins, amino acids, and protein-rich aquaculture plants such as duckweed and algae. These alternative systems will not be reviewed here.

Transformation of volatile N species to non-volatile species is a major biological treatment process comprising of coupled nitrification and denitrification processes. However, most treatments employ some variation of physical, chemical or components of both physical and chemical unit processes to provide suitable conditions for these processes to occur efficiently and cost-effectively. During nitrification, nitrifying bacteria transform TAN to oxidised N (nitrite and nitrate). These compounds are then biologically reduced to environmentally benign N gas (N₂) by denitrifying bacteria. The reaction rate of nitrification is extremely low compared to that of denitrification; consequently, nitrification is the rate-limiting step. Nitrification is the more critical step, and usually receives more attention in the biological treatment of wastewaters for removal of NH₄⁺. Common biological treatment systems consist of either single or two bioreactors. The single-reactor systems are either run alternately in aerobic and anaerobic modes or have both aerobic and anoxic zones in the same reactor to effect nitrification and denitrification, respectively. In contrast, these processes take place in separate reactors in the two-reactors-systems. To enhance the nitrification kinetics in particular, other features such as cell immobilisation on inert materials or other methods of biomass enrichment are incorporated.

Hu et al. (2003) studied a continuous-flow intermittent aeration (IA) process for N removal from anaerobically pre-treated pig wastewater at the laboratory scale. In this study, experiments were conducted at different: influent COD concentrations, aeration: no-aeration ratios, hydraulic retention time (HRT), and solids retention time (SRT). At the HRT of 3 days and SRT of 20 days in the IA tanks, nitrification and denitrification were successfully achieved in the IA process. Nitrogen removal rates surpassed 80%, and nitrite and nitrate were less than 20 mg L⁻¹ in the effluents. A similar system was evaluated by Zhang et al. (2006) for treating pig manure rich in intensity aeration of 1.0 L[air] m⁻³ was operated in a cyclic anaerobic–anoxic mode using low-N. In this study, a bench-scale sequencing batch reactor (SBR) were less than 20 mg l⁻¹ Nitrogen removal rates surpassed 80%, and nitrite and nitrate denitrification were successfully achieved in the IA process. 3 days and SRT of 20 days in the IA tanks, nitrification and
tonation time (HRT), and solids retention time (SRT). At the HRT of
3 days and SRT of 20 days in the IA tanks, nitrification and
denitrification were successfully achieved in the IA process. At the HRT of 3 days and SRT of 20 days in the IA tanks, nitrification and denitrification were successfully achieved in the IA process.
biological treatment of flushed pig manure in a 3000 finishing facility. The system consisted of a pond with a mixing zone for denitrification, and an aeration zone for nitrification, with recirculation from the aeration zone to the mixing zone, and a recycle from the aeration zone to the barns for flushing. Nitrogen reduction in the effluent was 65–90%, with more than 90% of the N being in the inorganic N form. In addition, a significant reduction in odour perception, irritation, and unpleasantness from liquid samples drawn from the treatment system was reported. The report also noted the high-energy cost for the operation. Another full-scale nitrification–denitrification system was reported by Townsend et al. (2003). This system was constructed to serve 52,800 finishing pigs. Nitrification and denitrification occurred in a single wastewater treatment plant centrally located on the farm reducing TN by an average of 87%. Townsend et al. (2003) also reported significant foam generation during aeration, necessitating the continuous use of a defoaming agent for the treatment to continue.

When designed and run appropriately, these systems can effectively (up to 99%) mitigate NH₃ emissions in CAFOs. It appears that the major hindrance is the economics of installing and operating the systems. An important element of biological N removal is the carbon source to complete the denitrification process. Reporting of N (either as TN, TKN, or TAN) needs to be well defined to enable inter-comparisons.

4. Building designs and manure managements

Accumulated urine and faeces on the floor is the main source of NH₃ volatilisation within animal buildings. The longer their residence times on the floor, the more the NH₃ volatilisation. The manure can be also thinly spread out, which further exacerbates NH₃ volatilisation as this provides larger surface areas. Frequent removal of manure may be critical in mitigating NH₃ volatilisation within the building. Scraping, flushing, slatted floors, conveyor belts, or combinations of these systems are currently the most common methods of removing manures from the floors or buildings.

Flushing floors with water every 2–3 h led to a 14–70% reduction in NH₃ loss compared to use of slatted floors in dairy barns (Voorburg and Kroodsma, 1992; Kroodsma et al., 1993; Ogink and Kroodsma, 1996). Increasing the flushing frequency, increasing the amount of water, and use of fresh water (as opposed to recycled water) further reduce NH₃ volatilisation within the building (Voorburg and Kroodsma, 1992; Monteny, 1996). However, since these practices may increase the volume of the slurry to be handled and also increase the cost of slurry utilisation, a compromise between flushing frequency, amount of water, use of fresh water, and the respective additional reduction of NH₃ losses has to be established.

Kroodsma et al. (1993) investigated the effects of different manure managements on NH₃ emissions from freestall dairy houses. Manure scraping every 3.5 h did not significantly decrease NH₃ emissions, while flushing with water every 3.5 h decreased the emissions by up to 70%. Frequent flushing (every 1–2 h) over short periods (2 s) was more effective than prolonged (3–6 s), but less frequent flushing (every 3.5 h). Ogink and Kroodsma (1996) evaluated two cattle manure management systems for reduction of NH₃ emissions from cow houses with partially slatted floors. One method was based on scraping the slats and subsequent flushing with water every 2 h, using 20 L [water] day⁻¹ cow⁻¹. The second method was similar, except that 4 g [formalin] l⁻¹ of flushing water was added. Compared to a control (no scraping or flushing), the former method only lowered the emission by 14%, while adding formalin to the flushing water reduced emissions by 50%. Misselbrook et al. (2006) reported that pressure washing and the use of a urease inhibitor in addition to yard scraping were more effective means of reducing emissions compared with yard scraping alone, while reduction of yard area per animal was also an effective strategy to reduce total emissions.

For slatted floor systems, the frequency of manure removal from the pits under the slats is critical in the management of NH₃ emissions within the building (Hartung and Phillips, 1994). Hartung and Phillips (1994) compared four different manure removal strategies: a partially slatted floor (PSF) with a slurry pit emptied every 2 weeks, a PSF with a sloped slurry channel beneath that is flushed several times a day, a PSF floor with continuous recirculating and flushing, and a PSF floor with a continuous recirculating and combined with a basin and plug. The control was a PSF with a slurry pit underneath providing storage for 6 months. Respective NH₃ volatilisations were 20%, 60%, 40%, and 80% less than in the control. In a similar study, Lachance et al. (2005) reported a significant 46% reduction in NH₃ emissions when manure was removed every 2–3 days, compared to the 8-week removal frequency in the control. Lim et al. (2004) evaluated several manure management strategies for reducing NH₃ emissions in confined finishing pigs. The strategies included daily flushing, and static pits with 7, 14, and 42 d manure accumulation cycles, with and without pit recharge, with some secondary lagoon effluent after emptying. Flushing and static pit recharge with lagoon effluent resulted in significantly less NH₃. Mean NH₃ emission rates were 15, 27, and 25 g day⁻¹ AU⁻¹ for the 1-, 7-, and 14-day cycles without pit recharge, and 10, 12, and 11 g day⁻¹ AU⁻¹ for the 7-, 14-, and 42-day cycles with pit recharge, respectively. The mean daily NH₃ emissions from the rooms with static pits were 51–62% lower with recharge than without recharge. In summary, less NH₃ emissions occurred when pits were recharged after emptying, and when pits were emptied more frequently.

In poultry buildings (cage) removing manure twice a week using belts or weekly with drying manure on belts reduced NH₃ emission from battery cage houses by 60% or more compared to allowing manure to stay on the belt. However, daily removal has the potential of further reducing NH₃ emissions, since hardly any degradation then takes place inside the house (Monteny, 1996; Cowell and Apsimon, 1998).

Ammonia volatilisation within the buildings is also a function of the building ventilation system. Ventilation would increase NH₃ losses because of reduced resistance to NH₃ transfer into the air above the manure. For example, a common practice to reduce elevated NH₃ levels in poultry houses is to increase ventilation rates above the values needed for proper litter moisture control. The increased
ventilation rates reduce the NH$_3$ concentration in the house, but this translates directly into higher NH$_3$ emissions as well into the increased costs of running the ventilation fans.

5. Emissions capture and treatment

Important mitigation strategies of NH$_3$ and other gaseous emissions involve capturing or trapping the fugitive gases and subsequent treatment of the respective captured emissions. These strategies can be placed into two broad categories: (i) filtration and biofiltration and (ii) use of permeable and impermeable covers.

5.1. Filtration and biofiltration

Filtration is more a physical-chemical process while biofiltration not only traps but also biologically degrades or converts trapped compounds into their benign forms. Removing NH$_3$ from vented air using filters or scrubbers (water and acid) is feasible where barns are mechanically ventilated (Sommer and Hutchings, 1995; Groot Koerkamp, 1994). In most cases, the practical applications of these cleaning devices are limited due to their relatively high cost and technical problems due to dust, especially in poultry and pig houses.

Sun et al. (2000) described a 200 mm deep biofilter consisting of a mixture of compost and wood chips tested for removal of NH$_3$ from pig housing ventilation air. On average, this system removed 83% of NH$_3$ in the carrier air at a biofilter moisture content of 50% at a retention time of 20 s. Tanaka et al. (2003) also reported a reduction of 94% in NH$_3$ from composting air in a biofilter consisting of finished compost (of cattle manure and sawdust) within the first 72 h of treatment. Hong and Park (2005) reported a 100% NH$_3$ removal efficiency from air from a composting pile (of dairy manure mixed with crop residues) in a 500 mm deep, 50:50 manure compost to a 20 mm screen size wood chips efficiently removed NH$_3$ from a pig finishing building. A 500 mm deep biofilter made consisting of a mixture of pine and perlite removed 95.6% NH$_3$ from ventilation air from a pig rearing facility in a pilot-scale system (Chang et al., 2004). Kastner et al. (2004) reported that a biofilter made of pre-screened yard waste compost reduced NH$_3$ by 25–95% in ventilation air from a modern 2400-sow farrow-to-wean unit, depending on the residence time and inlet NH$_3$ concentration. Martinec et al. (2001) evaluated several biofilter materials (biochips, coconut peels, barkwood, pellets+bark, and compost) for reduction of NH$_3$ from pig operations. Ammonia reduction with these materials ranged between 9% and 26%.

There is a broad range of biofilter efficiencies in the removal of NH$_3$ in carrier air. The wide range of performances (9–100%) reported in the literature may be attributed not only to the wide range of biofilter materials but also to other factors such as maintenance of optimum moisture in the filter bed, the residence time of the air in the biofilter (Sun et al., 2000; Hartung et al., 2001; Tanaka et al., 2003), the NH$_3$ load in the incoming air (Sheridan et al., 2002; Kastner et al., 2004), and how well the microbial community is established in the biofilter. Well-designed and operated systems can effectively mitigate NH$_3$ emissions from livestock operations.

For the readers interested in more details on acid scrubbers and trickling filters, a comprehensive review of these technologies for treatment of exhaust air from pig and poultry houses in the Netherlands has recently been completed (Melse and Ogink, 2005). In that review article, NH$_3$ removal in acid scrubbers ranged from 40% to 100%, with an overall average of 96%, while NH$_3$ removal efficiency in bio-trickling filters ranged from −8% to +100% with an overall average of 70%. Process control with pH and automatic water discharge were sufficient to guarantee NH$_3$ removal efficiency in acid scrubbers. The review concluded that improvement of process control is required in bio-trickling filters to guarantee NH$_3$ removal efficiency. Recent results from Kosch et al. (2005) are similar to the values found by Melse and Ogink (2005).

5.2. Impermeable and permeable covers

The simplest control method to mitigate NH$_3$ emissions from storage and treatment systems open to the atmosphere is to use a physical cover to contain the emissions. Impermeable covers, which trap gases released from such systems, are regularly used in conjunction with scrubbers or biofilters. The effectiveness of these covers depends not only on their trapping efficiency but also on the effectiveness of the scrubber or the biofilter with which they are used in combination. Permeable covers trap and bio-transform NH$_3$ just like biofilters, and include materials such as straw, cornstalks, peat moss, foam, geotextile fabric, and Leca® rock. The performances of impermeable and permeable covers are summarised in Table 5.

In comparison to the uncovered control, two impermeable covers, a floating film (two 2-mm-thick polyethylene film layers glued together) and a tarpaulin, effectively reduced NH$_3$ emissions from pig manure lagoons by 99.7% and 99.5%, respectively (Funk et al., 2004). Scotford and Williams (2001) reported a nearly 100% reduction in NH$_3$ losses from a pig slurry lagoon covered with a floating 0.5-mm-thick reinforced ultraviolet light-stabilised opaque polyethylene cover. Funk et al. (2004) reported effective control of NH$_3$ emission using an air-supported 0.35-mm-thick vinyl-coated fabric cover installed on an earthen-embanked pig lagoon, but experienced major challenges in controlling the gas leakage. Ammoniacal-N is not soluble in oil; therefore, thin layers of oil (oil films) can also create impermeable covers over stored manure slurries. Heber et al. (2005) evaluated the efficacy of soybean oil sprinkling in NH$_3$ emission mitigation in tunnel-ventilated pig finishing barns. The oil-treated barn yielded 40% less NH$_3$ emission than the control barn. Better results were reported when a layer of vegetable oil was placed on the surface of manure liquid/slurry. Guarino et al. (2006) reported a reduction of NH$_3$ emissions between 79% and 100% when 3- and 9-mm-thick layers of vegetable oil were applied on stored pig and cattle slurries. Portejoie et al. (2003) reported similar NH$_3$ emission reductions (93%) with a 10 mm oil layer. Other laboratory and on-farm studies with a 6 mm rapeseed
Table 5 – Summary of the performances of permeable and impermeable covers in abating ammonia emissions from livestock manure storages

<table>
<thead>
<tr>
<th>Cover type</th>
<th>Emission reduction (%)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyethylene</td>
<td>80–100</td>
<td>Funk et al. (2004), Scotford and Williams (2001), Miner et al. (2003)</td>
</tr>
<tr>
<td>Tarpaulin</td>
<td>99.5</td>
<td>Funk et al. (2004)</td>
</tr>
<tr>
<td>Oil films</td>
<td>40–100</td>
<td>Heber et al. (2005), Guarino et al. (2006), Portejoie et al. (2003), Hornig et al. (1999)</td>
</tr>
<tr>
<td>Geotextile cover</td>
<td>44</td>
<td>Bicudo et al. (2004)</td>
</tr>
<tr>
<td>Straw covers</td>
<td>37–90</td>
<td>Clanton et al. (2001), Semmer et al. (1993), Hornig et al. (1999), Guarino et al. (2006), Xue et al. (1999), Miner and Pan (1995)</td>
</tr>
<tr>
<td>Surface crust, peat, & PVC foil</td>
<td>24–32</td>
<td>Sommer et al. (1993)</td>
</tr>
<tr>
<td>Leca rock</td>
<td>14–87</td>
<td>Sommer et al. (1993), Balsari et al. (2006)</td>
</tr>
<tr>
<td>Polymer composite</td>
<td>17–54</td>
<td>Zahn et al. (2001)</td>
</tr>
<tr>
<td>Pegulit</td>
<td>91</td>
<td>Hornig et al. (1999)</td>
</tr>
<tr>
<td>Wood chips</td>
<td>17–91</td>
<td>Guarino et al. (2006)</td>
</tr>
<tr>
<td>Corn stalks</td>
<td>37–60</td>
<td>Guarino et al. (2006)</td>
</tr>
<tr>
<td>Zeolite on permeable cover</td>
<td>90</td>
<td>Miner and Pan (1995)</td>
</tr>
<tr>
<td>Polystyrene foam</td>
<td>45–95</td>
<td>Miner and Suh (1997)</td>
</tr>
</tbody>
</table>

A permeable geotextile cover installed on pig manure storage facilities resulted in a 44% reduction in NH₃ emissions, but the cover performance deteriorated after 1 year (Bicudo et al., 2004). Clanton et al. (2001) reported 37%, 72%, and 86% reductions in NH₃ emissions from pig manure storage using 100-, 200-, and 300-mm-thick straw covers, respectively, supported on a geotextile fabric. The permeable geotextile fabric itself did not have a significant effect on NH₃ emissions without a straw layer. Compared to uncovered cattle and pig slurry, surface crust, peat, straw, PVC foil, and Leca® rock achieved 24%, 32%, 60%, 26%, and 14% maximum NH₃ emission reductions, respectively (Sommer et al., 1993). Zahn et al. (2001) reported a 54% reduction of NH₃ emissions from a lagoon covered with an acclimated proprietary polymer composite bio-cover. Compared to an uncovered oil layer indicated control of NH₃ emissions by up to 85%, while a thinner 3 mm layer was ineffective (Hornig et al., 1999).

6. Land application strategies

Significant NH₃ volatilisation can occur when manure is surface-spread to fertilise crop and pasture fields. Minimising time of manure exposure on the surface of the ground is the most effective strategy for reducing NH₃ emissions during or after field application of manure. Direct injection, prompt ploughing-in, increased infiltration, and washing-in after applications are some of the methods available to limit this exposure time. Combining these improved field application techniques with other NH₃-holding techniques, such as use of additives, improves the NH₃ utilisation efficiency of crops and pastures, which further decreases NH₃ loss. A summary of the
efficacy of various application strategies in reducing NH$_3$ emissions is given in Table 6.

In practice, direct injection or immediate incorporation of manure into the soil reduces NH$_3$ losses better than other application methods. Direct injections to within 30–300 mm depths reduced NH$_3$ volatilisation by 47–98% compared to surface applications (Hoff et al., 1981; Thompson et al., 1987; van der Molen et al., 1990; Svensson, 1994; Rubæk et al., 1996; Morken and Sakshaug, 1998; Smith et al., 2000; Sommer and Hutchings, 2001). Where direct injection or immediate incorporation is not an option, other surface placement methods such as band spreading, trailing shoe, and shallow slot injection are more effective than surface broadcasting. These practices have been reported to reduce NH$_3$ losses by between 39% and 83% compared with surface broadcasting (Thompson et al., 1990a; Svensson, 1994; Frost, 1994; Smith et al., 2000). Some of these researchers (Thompson et al., 1990a; Svensson, 1994), however, have pointed out that, with time, band spreading is not much more effective than surface broadcasting.

Research has also shown that NH$_3$ losses from surface-applied slurry are inversely related to infiltration. One method of increasing manure infiltration into the soil is manure dilution with water. Manure slurry diluted about 100% with water (from 10% to 4.5% dry matter) has been observed to reduce NH$_3$ losses by 44–91% (Sommer and Olesen, 1991; Stevens et al., 1992; Frost, 1994; Morken and Sakshaug, 1998). Another method of increasing infiltration is cultivating the soil surface or increasing the surface roughness. Cultivating the soil surface before surface application of slurry reduced NH$_3$ losses by between 40% and 90% compared to uncultivated soils (Sommer and Thomsen, 1993). A similar method of increasing infiltration is cultivating the top 60 mm of the soil to mix applied slurry with soil. This manure–soil mixing reduces NH$_3$ loss by as much as 60% compared to surface application (Van der Molen et al., 1990). An other research has shown infiltration is also higher at low soil moisture contents, and slurry application at lower soil moisture reduces NH$_3$ loss by as much as 70% (Sommer and Jacobsen, 1999). The inverse relationship between NH$_3$ loss and the rate (volume/time/area) of slurry application suggests that intermittent slurry application might also reduce NH$_3$ loss because of improved infiltration (Thompson et al., 1990b).

Ammonia losses from manure applied during crop growth periods may be reduced by using trail hoses, which apply the slurry onto the soil between rows of plants (Bless et al., 1991; Holtan-Hartwig and Bockman, 1994) or by using a trailing shoe (Smith et al., 2000). The reduced NH$_3$ loss is attributed to immediate absorption of NH$_4^+$ by plant leaves and roots, reduced slurry exposed surface, and canopy-modified microclimate not favourable for NH$_3$ volatilisation (Holtan-Hartwig and Bockman, 1994; Thompson et al., 1990a, b).

Atmospheric conditions play an important role in NH$_3$ loss reduction during slurry application. Sommer et al. (1991) reported a linear increase in NH$_3$ volatilisation between 0 and 19 °C during a 24-h period. In the same study, NH$_3$ loss increased significantly when the wind speed increased to 2.5 m s$^{-1}$, but no consistent increase in NH$_3$ loss was recorded between wind speeds of 2.5 and 4.0 m s$^{-1}$. In an earlier study, increasing the wind speed from 0.5 to 3.0 m s$^{-1}$ increased NH$_3$ loss by about 29% in 5 days (Thompson et al., 1990b). These observations suggest that manure applications should be scheduled for calm conditions.

In practice, direct manure injection or manure incorporation into the soil adds to the costs of manure application. However, the cost of injection or manure incorporation into the soil during land application to reduce NH$_3$ emissions may be recaptured in terms of better crop yields due to a more efficient utilisation of the applied manure. Considering other environmental benefits accruing from reduced NH$_3$ loss, as well as costs that may be incurred in legal conflicts due to NH$_3$ emissions, these practices can be economically justified.

7. Summary and conclusions

Reducing N excretion through dietary changes can effectively mitigate NH$_3$ emissions from livestock operations. In ruminants, reducing the CP intake by as little as 5% and supplementing diets with amino acids can reduce NH$_3$ emissions by as much as 74% from excreted manure. For non-ruminants, similar NH$_3$ emission reductions have been observed by replacing CP with amino acids, which shifts N excretion from urine to faeces.

Table 6 – Summary of livestock manure application strategies for abatement of ammonia emissions

<table>
<thead>
<tr>
<th>Application strategy</th>
<th>Emission reduction (%)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band application</td>
<td>0–65</td>
<td>Thompson et al. (1990a), Smith et al. (2000), Morken and Sakshaug (1998), Huijsmans et al. (2001)</td>
</tr>
<tr>
<td>Trailing shoe</td>
<td>43</td>
<td>Smith et al. (2000)</td>
</tr>
<tr>
<td>Low soil water content</td>
<td>70</td>
<td>Sommer and Jacobsen (1999)</td>
</tr>
<tr>
<td>Soil surface cultivation</td>
<td>40–90</td>
<td>Sommer and Thomsen (1993), Van der Molen et al. (1990), Huijsmans et al. (2003)</td>
</tr>
</tbody>
</table>
All of the urine–faeces segregation methods evaluated and reviewed have reduced NH$_3$ emissions from livestock barns by about 50% compared to the conventional manure handling systems. Therefore, the critical factors that need to be considered in making the choice of method for separating urine from faeces from these methods are the cost of installing the system, maintenance, and ease versus cost of operation. The closely related use of urease inhibitors for control of NH$_3$ emissions in CAFO has been somewhat successful at the laboratory level, but there is no pilot- or full-scale application reported in the literature. The lack of information of its efficacy at pilot- or full-scale facilities may partly explain why urease inhibitors have not been employed for on-farm control of NH$_3$ emissions. This lack of adoption may also be attributed to the unknown effects of these chemicals on the crops or pastures where the treated manures are ultimately utilised.

Acids and acidifying salts are effective at holding NH$_3$ in NH$_4^+$ form. However, strong acids reduce slurry pH more cost-effectively than the weaker acids and acidifying salts. In addition, because strong acids are more hazardous for use on the farm than acidifying salts and weaker acids, although the latter are less effective than the strong acids, they are more suitable for use on-farm. Among ammonia-binding amendments, zeolite and sphagnum moss are more effective for reducing NH$_3$ loss in manure slurries or liquid than in solid poultry manures. Saponins do not seem to as effective as either zeolite or peat moss in mitigating NH$_3$ emissions.

There are several other additives whose modes of operations are not known. It is important for producers to ensure that the effectiveness of these additives has been scientifically verified by independent and reputable institutions before they can adopt them for use in their facilities. Often, large amounts of the product are required and in most cases such as with the use of acid/acidic salts, precautions must be taken to safeguard the safety of livestock and farm workers. In addition, use of acids may result not only in an undesirable increase in the mineral content of the manure but also in the corrosion of equipment and structures. Selection of appropriate application methods for effective use of these additives is very important. Currently, there is a lack of standardised applications and evaluation protocols for these additives.

Impermeable covers are more effective than permeable covers in NH$_3$ mitigation strategies from manure storages. However, if no biofilters are used to clean up the trapped gases under impermeable covers, excessive NH$_3$ and other gaseous emissions may occur during land application. Although the biggest hurdle in the installation of impermeable lagoon covers on pig farms is the initial purchase price of the cover, another major consideration is availability of more land base required to receive the conserved N.

Biofilters exhibit a wide range of performances (9–100% effectiveness) in the removal of NH$_3$ in carrier air. This variability in effectiveness may be attributed not only to the wide range of biofilter materials but also to other factors such as maintenance of optimum moisture in the filter bed, the residence time of the air in the biofilter, the NH$_3$ load in the incoming air, and the status of the microbial community in the biofilter. However, these systems can effectively be used to mitigate NH$_3$ emissions from livestock operations. There is also a wide variation in the effectiveness of other NH$_3$ filters (scrubbers and trickling filters). Process control with pH and automatic water discharge were sufficient to guarantee NH$_3$ removal efficiency in acid scrubbers, while process control is required in biofiltering filters to guarantee NH$_3$ removal efficiency.

Although more costly, direct manure injection or manure incorporation into the soil are the most effective (up to 98%) methods for mitigating NH$_3$ emissions amongst methods of manure application to soil. However, the extra costs of injection or incorporating manure into the soil may be recaptured in terms of better crop yields because of more efficient utilisation of the applied manure. Direct injection or immediate incorporation into the soil may not only become attractive practices, but may also be economically viable considering other environmental benefits that will accrue from reduced NH$_3$ volatilisation, as well as costs that may be incurred in legally defending NH$_3$ releases.

R E F E R E N C E S

Al-Kanani T; Akochi E; Mackenzie A F; Alli I; Barrington S (1992). Organic and inorganic amendments to reduce ammonia losses from liquid hog manure. Journal of Environmental Quality, 21, 709–715

Amon M; Dobiec M; Sneath R W; Phillips V R; Missetbrook T H; Pain B F (1997). A farm-scale study on the use of clinoptilolite zeolite and De-Odorase 15 for reducing odour and ammonia emissions from broiler houses. Bioresource Technology, 61(3), 229–237

Beline F; Martinez J; Marol C; Guiraud G (1998). Nitrogen transformations during anaerobically stored 15N-labeled pig slurry. Bioresource Technology, 64, 83–88

Bless H G; Beinhauer R; Sattelmacher B (1991). Ammonia emission from slurry applied to wheat stubble and rape in...

Kim I B; Ferket P R; Powers W J; Stein H H; van Kempen T A T G (2004). Effects of different dietary acidifier sources of calcium and phosphorus on ammonia, methane and odorant emission from growing-finishing pigs. Asian Australasian Journal Animal Science, 17, 1131–1138

Kithome M; Paul J W; Bomke A A (1999). Reducing nitrogen losses during simulated composting of poultry manure using adsorbents or chemical amendments. Journal of Environmental Quality, 28(1), 194–201

Klopfenstein T; Angel R; Cromwell G L; Erickson G L; Fox D G; Parsons G; Satter L D; Sutton A L (2002). Animal diet modification to decrease the potential for nitrogen and phosphorus pollution. Council for Agricultural Science and Technology, 21, 1–16

Kosch R; Siemens V; van den Weghe H (2005). Efficiency of a biocap scrubber system for the reduction of ammonia and dust emissions in a broiler house. ASAE Paper No. 054164

Kulling D R; Menzi H; Krober T F; Nefelt A; Sutter F; Lischer P; Kreuzer M (2001). Emissions of ammonia, nitrous oxide and methane from different types of dairy manure during storage as affected by dietary protein content. Journal of Agricultural Science Cambridge, 137, 235–250

Lachance Jr I; Godbout S; Lemay S P; Larouche J P; Pouliot F (2005). Separation of pig manure under slats: to reduce releases in the environment. ASAE Paper No. 054159

Lim T T; Heber A J; Nj I J; Kendall D C; Richert B T (2004). Effects of manure removal strategies on odor and gas emissions from swine finishing. Transactions of the ASAE, 47(6), 2041–2050

Luostarinen S; Luste S; Valentin L; Rintala J (2006). Nitrogen removal from on-site treated anaerobic effluents using intermittently aerated moving bed biofilm reactors at low temperatures. Water Research, 40(6), 1607–1615

Martinec M; Hartung E; Jungbluth T; Schneider F; Wieser P H (2001). Reduction of gas, odor and dust emissions from swine operations with biofilters. ASAE Paper No. 014079

Miner J R; Humenik F J; Rice J M; Rashash D M C; Williams C M; Robarge W; Harris D B; Sheffield R (2003). Evaluation of a
permeable, 5 cm thick, polyethylene foam lagoon cover.

Transactions of the ASAE, 46(5), 1421–1426

Nakaue H S; Koeliker J K; Pierson M L (1981). Effect of feeding broilers and the direct application of clinoptilolite (zeolite) on clean and re-used broiler litter on broiler performance and house environment. Poultry Science, 60, 1221

Ogink N W M; Kroodsma W (1996). Reduction of ammonia emission from a cow cubicle house by flushing with water or a formalin solution. Journal of Agricultural Engineering Research, 63(3), 197–204

Otto E R; Yokoyama M; Hengemuehle S; Bermuth R D; von Kempen T; van Trottier N L (2003). Ammonia, volatile fatty acids, phenolics, and odor offensiveness in manure from growing pigs fed diets reduced in protein concentration. Journal of Animal Science, 81, 1754–1763

Pan P T; Drapcho C M (2001). Biological anoxic/aerobic treatment of swine waste for reduction of organic carbon, nitrogen, and odor. Transactions of the ASAE, 44(6), 1789–1796

Panetta D M; Powers W J; Lorimer J C (2004). Direct measurement of management strategy impacts on ammonia volatilization from swine manure. ASAE Paper No. 044107

Parker D B; Pandrangi S; Greene L W; Almas L K; Cole N A; Rhoades M B; Koziel J A (2005). Rate and frequency of urease inhibitor application for minimizing ammonia emissions from beef cattle feedyards. Transactions of the ASAE, 48, 787–793

Rubaek G H; Henriksen K; Petersen J; Ramussen B; Sommer S G (1996). Effects of application technique and anaerobic digestion on gaseous nitrogen loss from animal slurry applied to ryegrass (Lolium perene). Journal of Agricultural Science, 126, 481–492

Sheridan B; Curran T; Dodd V; Colligan J (2002). Biofiltration of odour and ammonia from a pig unit—a pilot-scale study. Biosystems Engineering, 82(4), 441–453

Shi Y; Parker D B; Cole N A; Auvermann B W; Mehlhorn J E (2001). Surface amendments to minimize ammonia emissions from beef cattle feedlots. Transactions of the ASAE, 44(3), 677–682

Smith D R; Moore P A; Haggard Jr B E; Maxwell C V; Daniel T C; vanDevander K; Davis M E (2004). Effect of aluminum chloride and dietary phytase on relative ammonia losses from swine manure. Journal of Animal Science, 82, 605–611

Stevens R J; Laughlin R J; Frost J P (1989). Effect of acidification with sulphuric acid on the volatilization of ammonia from cow

Stewart K J; Lemay S P; Barber E M; Laguë C; Crowe T (2004). Experimental manure handling systems for reducing airborne contamination of fecal origin. ASAE Paper No. 044132, St Joseph, MI

Sun Y; Clanton C J; Janni K A; Malzer G L (2000). Sulfur and nitrogen balances in biofilters for odorous gas emission control. Transactions of the ASAE, 43(6), 1861–1875

Swierstra D; Braam C R; Smits M C (2001). Grooved floor system for cattle housing: ammonia emission reduction and good slip resistance. Applied Engineering in Agriculture, 17(1), 85–90

Ten-Have P J W; Willers H C; Derikx P J L (1994). Nitrification and denitrification in a activated-sludge system for supernatant from settled swow manure with molasses as an extra carbon source. Bioresource Technology, 47(2), 135–141

Thompson R B; Pain B F; Lockyer D R (1990a). Ammonia volatilization from cattle slurry following surface application to grassland. I. Influence of mechanical separation, changes in chemical composition during volatilization, and the presence of grass sward. Plant and Soil, 125, 109–117

Thompson R B; Pain B F; Rees Y J (1990b). Ammonia volatilization from cattle slurry following surface application to grassland. II. Influence of application rate, wind speed and applying slurry in narrow bands. Plant and Soil, 125, 119–128

Thompson R B; Ryden J C; Lockyer D R (1987). Fate of nitrogen in cattle slurry following surface application or injection to grassland. Journal of Soil Science, 38, 689–700

Turner L W; Cromwell G L; Bridges T C; Carter S; Gates R S (1996). Ammonia (NH3) emission from swine waste as influenced by diet manipulation. Proceedings of the First International Conference on Air Pollution from Agricultural Operations, pp 453–458, Kansas City, MO, USA

Turner L W; Gates R S; Cromwell G L; Dozier W A; Ferguson N S; Taraba J L (1997). Manipulation of swine diets to reduce ammonia and harmful gaseous emissions from manure, p 11. ASAE Paper No. 974035

