Vegetation Types on Rangeland

May 12, 2011 Print Friendly and PDF

The major rangeland types of the world are grasslands, desert shrublands, savanna woodlands, forests, and tundra. Each of these rangeland types has several unique plant associations that host a variety of different biota depending on the climate, soils, and human influences. The type of rangeland must be considered when planning management activities because they differ in precipitation, soils, and terrain. Therefore, management practices that work well in one region may be unsuitable for another region.



Grasslands are generally dominated by plants in the family Gramineae and are virtually free of woody plants. They are the most productive rangelands in the world for providing forage for wild and domestic ungulates. Grasslands generally occur in areas receiving between 250 millimeters (mm) and 900 mm annual precipitation. This precipitation most often occurs as frequent light rains over 90 days or more, with the bulk of the moisture falling in the summer months. These conditions favor grasses, whose fibrous roots can effectively gather moisture from the soil surface. The soils of grasslands are more than 2 meters (m) deep, loamy textured, high in organic matter, and very fertile.

Desert Shrublands

Desert shrublands are the driest of the world’s rangelands, usually receiving less than 250 mm of annual precipitation. The precipitation in desert shrublands varies greatly from year to year, occurring as infrequent, high-intensity rains in less than 90 days. As a result, the water content of the soil surface is very dry for much of the year and out of reach of the short fibrous roots of grass plants. These conditions favor shrubs whose long tap roots can collect moisture from deeper within the soil profile. Desert shrubs are typically spaced farther apart, allowing their roots to spread laterally and collect water over a large area. Soils of desert shrublands are typically sandy– to loamy-textured and vary in depth. The amount of herbaceous understory depends on the texture of the soil and how quickly water percolates into deeper soil profiles.

Savanna Woodlands

Savanna woodlands have a productive herbaceous understory dominated by scattered, low-growing trees, less than 12 m tall. Typically savanna woodlands occur as a transition zone between grassland and forests and can shift toward either phase depending on grazing pressure, fire control, logging, and drought.


The closely spaced, taller trees of forests prevent the development of a herbaceous understory with any grazing value. Forests generally occur in high-rainfall areas (more than 500 mm) because of the greater amount of moisture needed to support the biomass of a forest. The coarse-textured and/or thin, rocky soils favor forest over grassland because they retain low amounts of moisture near the soil surface but store considerable moisture deep in the soil profile and/or rocky crevices. High precipitation causes substantial leaching of soil nutrients; therefore, forest soils are generally low in fertility. Thinning forests through logging or fire can open the canopy and create areas of valuable forage to wildlife and livestock.


Tundra is a level and treeless plain in arctic or high-elevation regions that cover about 5% of the earth’s surface. The extremely cold climate keeps tundra frozen for more than seven months of the year, and the permafrost restricts tree growth. Arctic tundra occurs over large areas in North America, Greenland, northern Europe, and northern Asia. Vegetation on the tundra consists primarily of low-growing, tufted perennial plants and lichens. The main type of woody plants are shrubs of the genus Salix. Low precipitation (250 mm to 500 mm) and strong winds make the tundra an inhospitable place for most plant life. Tundra is rarely used for livestock grazing because of its rough terrain and short grazing season (less than 90 days). However, Peru is an exception, where the alpine tundra is used extensively by alpacas and llamas.

Rangeland Regions

Descriptions are provided for the major rangeland regions of the United States.

Connect with us

  • Twitter
  • Facebook
  • YouTube
  • Pinterest
  • Google+


This is where you can find research-based information from America's land-grant universities enabled by




This work is supported by the USDA National Institute of Food and Agriculture, New Technologies for Ag Extension project.