Equine Pasture Management Introduction

Animal Manure Management March 16, 2015 Print Friendly and PDF

Purpose*

Sound grazing management strategies for horses have beneficial impacts on horse health, the environment, and the overall cost of keeping horses. This presentation explains how the fundamental principles of horse grazing behavior, horse nutrient requirements, plant chemical composition, and plant physiology are integrated in the development of sound grazing management strategies.

Why Is Pasture Management Important for Horse Operations?

Horses graze continuously and are capable of relatively large nutrient intakes in comparison with their requirements. This "wastage" of pasture nutrients has negative implications on both the cost of feeding horses and horse health. Mature horses, grazing pasture continually, consume on average 2.5% of their body weight in dry matter (DM) per day (range 1.5 to 3%). Therefore a 500 kg horse consumes approximately 12.5 kg DM/d. This level of DM intake represents a significant proportion of a horse's daily caloric requirements.

Digestible energy (DE) content of grass pasture can range from 1.78 to 2.74 Mcal/kg DM (mean ± S.D., 2.26 ± 0.48 Mcals/kg DM; n = 6959; Dairy One, 2011). Therefore a mature 500 kg horse consuming 12.5 kg DM/d from pasture consumes 28.85 Mcals DE/d, which is 11.58 Mcals greater than required (16.67 Mcals/d). A DE intake of 20 Mcal above maintenance DE is required per kg of BW gain and an increase in 1 body condition score unit requires approximately 18 kg of body weight gain (NRC, 2007).

Given these assumptions the horse in this example would gain just under 1 body condition score unit per month, provided adequate pasture was available. The excess DE intake, and related pasture intake, in the above example is equivalent to approximately 0.7 of a grazing day (i.e., the horse consumes enough DE in 1 d to last 1.7 d). This scenario demonstrates that in some instances continuous grazing regimes, where intake is uncontrolled, can lead to excessive nutrient intake resulting in wasted resources, and contribute negatively to equine health (i.e., excess body condition). Therefore strategies that control and/or account for pasture DM intake should be implemented.

One strategy that can be used to control pasture intake is restricting the amount of time a horse has access to pasture. Restricting pasture access is accomplished by placing horses in dry-lots or by use of a grazing muzzle. It should be noted that horses may still be able to consume a significant amount of forage while wearing a grazing muzzle in place, depending on whether forage is prostrate or erect. Therefore, placing horses in a dry-lot for part of the day may be a more effective practice.

The daily amount of time allowed for grazing in order to match nutrient intake with nutrient requirements (e.g., caloric intake vs caloric requirement) varies with a horse's physiological state. Mature idle horses, horses at light work (e.g., ridden 2 to 3 times per week), mares in early gestation (less than 5 months), breeding stallions in the non-breeding season can consume their daily DE requirement in 8 to 10 h of grazing well managed pasture (i.e., > 90% ground cover maintained at a height of > 15 cm) during the seasons where pasture is actively growing. Horses having other physiological states can graze the entire day, as pasture intake alone will not likely provide all required nutrients due to their relatively high requirements.

Horses graze selectively, given the choice, which can negatively impact a plant's ability to re-grow and ultimately to persist. Horses tend to avoid grazing extremely mature pasture grasses, particularly those areas that are used as latrines. When areas of mature pasture grass are avoided horses concentrate grazing on less mature areas undergoing re-growth. Uneven grazing patterns can also result from horses over-grazing preferred forage in pastures that contain multiple plant species.

Horses show considerable preference toward some species (e.g, Kentucky bluegrass) as compared to others (e.g., tall fescue). The net result of uneven grazing is two-fold, wasted forage in one area and over-grazing in others. Prevention of uneven grazing and its consequences can be achieved by rotational grazing. Rotational grazing strategies allocate an area of pasture containing an amount of dry matter that will last a given number of horses 1 to 7 days and then horses are moved to a new area. This strategy forces horses to graze more uniformly.

The allocation process used in rotational grazing can also be used to limit intake to an amount that provides only the daily requirement thus preventing the problem of excessive pasture nutrient intake, such as that illustrated in the previous paragraph.

A sound grazing management plan manages grazing behavior in manner that attempts to match nutrient intake with nutrient requirements while simultaneously minimizing selective grazing and over grazing.

Authors

Paul Siciliano is a Professor of Equine Management and Nutrition in the Department of Animal Science at North Carolina State University where he teaches courses in equine management and conducts research dealing with grazing management of horses. Paul_Siciliano@ncsu.edu

Additional information

Chavez, S.J., P.D. Siciliano and G.B. Huntington. 2014. Intake estimation of horses grazing tall fescue (Lolium arundinaceum) or fed tall fescue hay. Journal of Animal Science. 92:p.2304–2308.

Bott, R.C., Greene, E.A., Koch, K., Martinson, K.L., Siciliano, P.D., Williams, C., Trottier, N.L., Burke, A., Swinker, A. 2013. Production and environmental implications of equine grazing. J. Equine Vet. Sci. 33(12):1031-1043.

Glunk, E.C., Pratt-Phillips, SE and Siciliano, P.D. 2013. Effect of restricted pasture access on pasture dry matter intake rate, dietary energy intake and fecal pH in horses. J. of Equine Vet. Sci. 33(6):421-426.

Dowler, L.E., Siciliano, P.D., Pratt-Phillips, S.E., and Poore, M. 2012. Determination of pasture dry matter intake rates in different seasons and their application in grazing management. J. Equine Vet. Sci. 32(2):85-92.

Siciliano, P.D. and S. Schmitt. 2012. Effect of restricted grazing on hindgut pH and fluid balance. J. Equine Vet. Sci. 32(9):558-561.

Siciliano, P.D. 2012. Estimation of pasture dry matter intake and its practical application in grazing management for horses. Page 9-12 in Proc. 10th Mid-Atlantic Nutrition Conference. N.G. Zimmermann ed., Timonium, MA, March 2012.

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2015. Title of presentation. Waste to Worth: Spreading Science and Solutions. Seattle, WA. March 31-April 3, 2015. URL of this page. Accessed on: today’s date.

Connect with us

  • Twitter
  • Facebook
  • YouTube

Welcome

This is where you can find research-based information from America's land-grant universities enabled by eXtension.org

LOCATE

USDA / NIFA

This work is supported by the USDA National Institute of Food and Agriculture, New Technologies for Ag Extension project.