CenUSA Bioenergy is a coordinated research and education effort investigating the creation of a regional system in the Central US for producing advanced transportation fuels from perennial grasses on land that is either unsuitable or marginal for row crop production. In addition to producing advanced biofuels, the proposed system will improve the sustainability of existing cropping systems by reducing agricultural runoff of nutrients in soil and increasing carbon sequestration.
CenUSA Bioenergy researchers from Iowa State University, Purdue University, University of Wisconsin, University of Minnesota, University of Nebraska, University of Illinois and the USDA Agricultural Research Service cover topics of interest to producers and growers in the following resources. Learn more about the CenUSA Bioenergy Project.
CenUSA Bioenergy Learning Modules - Table of Contents
The CenUSA Legacy: Creating a Sustainable Biofuels and Bioproducts System for the Midwest
CenUSA switchgrass cultivar research comparing the weights of bales grown on Blane Steckly Farm in Nebraska. Photo: Keith Glewen, University of Nebraska–Lincoln.
Casler, M.D. (2014). Heterosis and reciprocal-cross effects in tetraploid switchgrass. Crop Sci. 54(5): 2063 . DOI: 10.2135/cropsci2013.12.0821.
Casler, M.D. & Vogel, K.P. (2014). Selection for biomass yield in upland, lowland, and hybrid switchgrass. Crop Sci. 54(2):626-636. DOI: 10.2135/cropsci2013.04.0239.
Dien, B. S., P.J. O’Bryan, R.E. Hector, L.B. Iten, R.B. Mitchell, N. Qureshi, S. Gautum, K.P. Vogel, & M.A. Cotta. 2013. Conversion of switchgrass to ethanol using dilute ammonium hydroxide pretreatment: influence of ecotype and harvest maturity. Environ. Technol. 34:13-14. DOI: 10.1080/09593330.2013.833640
Feng, Q., I. Chaubey, G.Y. Her, R. Cibin, B. Engel, J.J. Volenec & X. Wang. 2015. Hydrologic and water quality impacts and biomass production potential on marginal land. Environmental Modelling & Software. 72:230-238. http://dx.doi.org/10.1016/j.envsoft.2015.07.004
Jahufer, M.Z.Z. & M.D. Casler. 2014. Application of the Smith-Hazel selection index for improving biomass yield and quality of switchgrass. Crop Sci. 55(3):1212. doi: 10.2135/cropsci2014.08.0575.
Koch, K., R. Fithian, T. Heng-Moss, J. Bradshaw, J., G. Sarath, & C. Spilker. (2014). Evaluation of tetraploid switchgrass populations (Panicum virgatum L.) for host suitability and differential resistance to four cereal aphids. J. Econ. Entomol. 107(1):424-431. 2014. DOI: http://dx.doi.org/10.1603/EC13315
Koch, K., T. Heng-Moss, J. Bradshaw & G. Sarath, G. (2014). Categories of resistance to greenbug and yellow sugarcane aphid (Homoptera: Aphididae) in three tetraploid switchgrass populations. Bioenerg. Res. 7:909-918. DOI: 10.1007/s12155-014-9420-1
Koch, K., N. Palmer, M. Stamm, J. Bradshaw, E. Blankenship, L. Baird, G. Sarath, and T. Heng-Moss. 2014. Characterization of Greenbug Feeding Behavior and Aphid (Hemiptera: Aphididae) Host Preference in Relation to Resistant and Susceptible Tetraploid Switchgrass Populations. Bioenergy Research 8: 165-174.
Nichols, V.A., F.E. Miguez, M.E. Jarchow, M.Z. Liebman & B.S. Dien 2014. Comparison of cellulosic ethanol yields from midwestern maize and reconstructed tallgrass prairie systems managed for bioenergy. Bioenerg. Res. 7: 1550. doi: 10.1007/s12155-014-9494-9
Price, D.L. & M.D. Casler (2014). Divergent selection for secondary traits in upland tetraploid switchgrass and effects on sward biomass yield. BioEnergy Res. 7(1):329-337. doi: 10.1007/s12155-013-9374-8
Price, D.L. & M.D. Casler. (2014). Inheritance of secondary morphological traits for among-and-within-family selection in upland tetraploid switchgrass. Crop Sci. 54:646-653. doi: 10.2135/cropsci2013.04.0273
Price, D.L. & M.D. Casler. (2014). Predictive relationships between plant morphological traits and biomass yield of switchgrass. Crop Sci. 54(2):637-645. doi: 10.2135/cropsci2013.04.0272
Ramstein, G.P., J. Evans S.M. Kaeppler, R.B. Mitchell, K.P. Vogel, C.R. Buell & M.D. Casler. 2015. Accuracy of genomic prediction in switchgrass improved by accounting for linkage disequilibrium. G3: Genes, Genomes, Genet. 6(4):1049-1062. doi: 10.1534/g3.115.024950. http://g3journal.org/content/6/4/1049.full
Resende, R.M.S., de Resende, M.D.V. & Casler, M.D. (2013). Selection methods in forage breeding: a quantitative appraisal. Crop Sci. 53:1925-1936.
Resende, R.M.S., Casler, M.D., & de Resende, M.D.V. (2014). Genomic selection in forage breeding: Accuracy and methods. Crop Sci. 54:143-156.
Schaeffer, S., F. Baxendale, T. Heng-Moss, R. Sitz, G. Sarath, R. Mitchell, & R. Shearman. 2011. Characterization of the arthropod community associated with switchgrass Poales: Poaceae in Nebraska. J. Kans. Entomol. Soc. 84(2): 87-104. https://naldc.nal.usda.gov/download/54245/PDF
Serapiglia, M.J., A.A. Boateng, D.K. Lee & M.D. Casler. (2016). Switchgrass harvest time management can impact biomass yield and nutrient content. Crop Sci. 56(4):1970-1980. doi: 10.2135/cropsci2015.08.0527
Serapiglia, M.J., B. Dien, A.A. Boateng & M.D. Casler. 2016. Impact of harvest time and switchgrass cultivar on sugar release through enzymatic hydrolysis. BioEnergy Res. DOI: 10.1007/s12155-016-9803-6
Serapiglia, M.J., C.A. Mullen, A.A. Boateng, B. Dien & M.D. Casler. 2016. Impact of harvest time and cultivar on conversion of switchgrass to fast pyrolysis bio-oils. BioEnergy Res. (In review).
Slininger, P.J., B.S. Dien, C.P. Kurtzman, B.R. Moser, E.L. Bakota, S.R. Thompson, P.J. O’Bryan, M.A. Cotta, V. Balan, M. Jin, M.D. Sousa & B.E. Dale. 2016. Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers. Biotechnol. Bioeng. 113: 1676–1690. doi: 10.1002/bit.25928
Stewart C.L., J.D. Pyle, K.P. Vogel, G.Y. Yuen & K.G. Scholthof. 2015. Multi-year pathogen survey of biofuel switchgrass breeding plots reveals high prevalence of infections by Panicum mosaic virus and its satellite virus. Phytopathology 105:1146-1154. doi:10.1094/PHYTO-03-15-0062-R
Vogel, K.P., G. Sarath & R.B. Mitchell. 2014. Micromesh fabric pollination bags for switchgrass. Crop Sci. 54(4): 1621-1623. doi: 10.2135/cropsci2013.09.0647
Vogel, K.P., Mitchell, R.B., Casler, M.D. & G. Sarath. (2014). Registration of 'Liberty' switchgrass. J. Plant Registration 8:242–247. DOI: 10.3198/jpr2013.12.0076crc.
Archontoulis, S.V., I. Huber, F.E. Miguez, P.J. Thorburn & D.A. Laird. 2016. A model for mechanistic and system assessments of biochar effects on soils and crops and tradeoffs. GCB Bioenergy 8: 1028–1045. doi: 10.1111/gcbb.12314
Bonin C., Heaton E.A. & Barb J. (2014). Miscanthus sacchariflorus: biofuel parent or new weed? Global Change Biology Bioenergy. Article first published online: 31 JAN 2014 DOI: 10.1111/gcbb.12098.
Cibin, R., E. Trybula, I. Chaubey, S.M. Brouder & J.J. Volenec. 2016. Watershed scale impacts of bioenergy crops on hydrology and water quality using improved SWAT model. GCB Bioenergy 8(4):837-848. doi: http://doi.org/10.1111/gcbb.12307
Coulman, B., Dalai A., Heaton E.A., Lefsrud M., Levin D., Lemaux, P.G., Neale D., Shoemaker S. P., Singh J., Smith D.L. & Whalen J.K. (2013). Lignocellulosic biofuel feedstocks. BioFPR, 7, 582-601; invited submission.
Dierking, R.M., D. Allen, S.M. Brouder & J.J. Volenec. 2016. Yield, biomass composition, and N use efficiency during establishment of four Miscanthus × giganteus genotypes as influenced by N management. Biomass Bioenergy 91:98-107. http://dx.doi.org/10.1016/j.biombioe.2016.05.005
Dowd, P.F., G. Sarath, R.B. Mitchell, A.J. Saathoff & K.P. Vogel. 2012. Insect resistance of a full sib family of tetraploid switchgrass Panicum virgatum L. with varying lignin levels. Genet. Resour. Crop Evol. 60(3):975-983. http://link.springer.com/article/10.1007/s10722-012-9893-8/fulltext.html. doi:10.1007/s10722-012-9893-8
Emerson, R., A. Hoover, A. Ray, J. Lacey, M. Cortez, C. Payne, D. Karlen, S. Birrell, D. Laird, R. Kallenbach, J. Egenolf, M. Sousek, and T. Voigt. 2014. Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks. Biofuels. 5(3):275-291.
Feng, Q., I. Chaubey, G.Y. Her, R. Cibin, B. Engel, J.J. Volenec & X. Wang. 2015. Hydrologic and water quality impacts and biomass production potential on marginal land. Environmental Modelling & Software. 72:230-238. http://dx.doi.org/10.1016/j.envsoft.2015.07.004
Fidel, R.B., Laird, D.A., & Thompson, M.L. (2013). Evaluation of Modified Boehm Titration Methods for Use with Biochars. Journal of Environmental Quality. 42:1771-1778.
Follett, R.F., K.P. Vogel, G. Varvel, Mitchell, R.B., & J. Kimble. 2012. Soil carbon sequestration by switchgrass and no-till maize grown for bioenergy. Bioenergy Res. 5(4):866-875. doi: 10.1007/s12155-012-9198-y
Graber, E.R., L. Tsechansky, R.B. Fidel, M.L. Thompson & D.A. Laird. 2016. Determining Acidic Groups at Biochar Surfaces via the Boehm Titration. In: B. Singh, M. Camps-Arbestain J. Lehmann, editors, Methods of Biochar Analysis. CSIRO Publishing, Melbourne, Chapter 8. (In press)
Heaton E.A., Schulte L.A, Berti M., Langeveld H., Zegada-Lizarazu W., Parrish D. & Monti, A. (2013). Integrating food and fuel: How to manage a 2G-crop portfolio. BioFPR. 7, 702-714; invited submission.
Johnson, J.M.F., D.L. Karlen, G.L., Gresham, K.B. Cantrell, D.W. Archer, B.J. Wienhold, G.E. Varvel, D.A. Laird, J. Baker, T.E. Ochsner, J.M. Novak, A.D. Halvorson, F. Arriaga, D.T. Lightle, A. Hoover, R. Emerson & N.W. Barbour. 2014. Vertical distribution of structural components in corn stover. Agriculture 4:274-287. doi:10.3390/agriculture4040274
Laird D.A., & Chang, C.W. (2013). Long-term impacts of residue harvesting on soil quality. Soil & Tillage Research. 134:33-40.
Mitchell, R., M. Schmer, B. Anderson, V. Jin, K. Balkcom, J. Kiniry, A. Coffin, A. & P. White. 2016. Dedicated energy crops and crop residues for bioenergy feedstocks in the Central and Eastern USA. BioEnergy Res. 9:384-398. doi: 10.1007/s12155-016-9734-2
Ojeda, J.J., J.J. Volenec, S.M. Brouder, O.P. Caviglia & M.G. Agnusdei. 2016. Evaluation of Agricultural Production Systems Simulator APSIM as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US environments. GCB Bioenergy. doi: 10.1111/gcbb.12384
Orr, M.J., Gray, M.B., Applegate,B., Volenec,J., Brouder, S., & Turco, R. (2015). Transition to second generation cellulosic biofuel production systems reveals limited negative impacts on the soil microbial community structure. Applied Soil Ecology 95:62-72. DOI: 10.1016/j.apsoil.2015.06.002 (in press)
Owens V.N., Viands D.R., Mayton H.S., Fike J.H., Farris R., Heaton E.A., Bransby D.I. & Hong C.O. (2013). Nitrogen use in switchgrass grown for bioenergy across the USA. Biomass and Bioenergy. 58, 286-293.
Porter, P., R.B. Mitchell & K.J. Moore. 2015. Reducing hypoxia in the Gulf of Mexico: Reimagining a more resilient agricultural landscape in the Mississippi River watershed. J. Soil Water Conserv. 70(3):63A-68A. http://www.jswconline.org/content/70/3/63A.refs
Rogovska, N., D.A. Laird & D.L. Karlen. 2016. Corn and soil response to biochar application and stover harvest. Field Crops Res. 187:96-106. http://dx.doi.org/10.1016/j.fcr.2015.12.013
Rogovska, N., D.A. Laird, S.J. Rathke, and D.L. Karlen. 2014. Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma. 230:340-347.
Serapiglia, M.J., A.A. Boateng, D.K. Lee & M.D. Casler, M.D. 2016. Switchgrass harvest time management can impact biomass yield and nutrient content. Crop Sci. 56(4):1970-1980. https://dl.sciencesocieties.org/publications/cs/abstracts/56/4/1970. doi: 10.2135/cropsci2015.08.0527
Sindelar, A., M. , M. Gesch, F. Forcella, C. Eberle, M. Thom & D. Archer. 2015. Winter oilseed production for biofuel in the U.S. Corn Belt: Opportunities and limitations. GCB Bioenergy. doi: 10.1111/gcbb.12297
Trybula, E.T., R. Cibin, J.L. Burks, I. Chaubey, S.M. Brouder & J.J. Volenec. 2014. Perennial rhizomatous grasses as bioenergy feedstock in SWAT: parameter development and model improvement. GCB Bioenergy, 7: 1185–1202. doi: 10.1111/gcbb.12210
Vogel, K.P., G. Sarath & R.B. Mitchell. 2014. Micro-mesh fabric pollination bags for switchgrass. Crop Sci. 54:1621-1623. doi: 10.2135/cropsci2013.09.0647
Vogel, K.P., Mitchell, R.B., Casler, M. D. & Sarath, G. (2014). Registration of ‘Liberty’ switchgrass. Journal of Plant Registrations (accepted 25 Feb., 2014).
Waramit, N., Moore K.J. & Heaton E.A. (2013). Nitrogen and harvest date affect developmental morphology and biomass yield of warm-season grasses. Global Change Biology Bioenergy. Article first published online: 29 AUG 2013, DOI: 10.1111/gcbb.12086
Woodson, P., S.M. Brouder & J.J. Volenec. 2013. Field-scale potassium and phosphorus fluxes in the bioenergy crop switchgrass: Theoretical energy yields and management implications. J. Plant Nutr. Soil Sci. 176:387-399. http://onlinelibrary.wiley.com/doi/10.1002/jpln.201200294/abstract. doi:10.1002/jpln.201200294
Proceedings
Mitchell, R.B. (2013) Establishing and managing perennial grasses for bioenergy. Proc. 25th Annual Integrated Crop Management Conference, Iowa State University, pp. 49-51. 2013.
Mitchell, R.B., & Schmer, M.R. Switchgrass for biomass energy. Proc. Nebraska Crop Production Clinic Proceedings, University of Nebraska, pp. 13-16. 2014.
Abstracts
Dierking, R.M., Volenec, J.J. & Murphy, P.T. (2013). Forage yield and quality of Miscanthus giganteus subjected to simulated haying/grazing conditions. Abstract 245-5. Inter. Meeting of the Amer. Soc. Agron.-Crop Sci. Soc. of Amer.-Soil Sci. Soc. of Amer. Nov. 2-6, Tampa, FL.
Long, M.K., Volenec, J.J. & Brouder, S.M. (2013). Theoretical ethanol yield for potential bioenergy sorghum genotypes of differing compositions. Abstract 373-9. Inter. Meeting of the Amer. Soc. Agron.-Crop Sci. Soc. of Amer.-Soil Sci. Soc. of Amer. Nov. 2-6, Tampa, FL.
De Souza, A., Birrell, S.J., Steward, B.L & S. Ksketri. 2015. Moisture Content and Bulk Density Prediction Using Dielectric Properties for Switchgrass and Corn Stover. ASABE Paper No. 2160026, Am. Soc. of Agric. Engineers, St. Joseph, MI. doi:10.13031/aim.20152160026
Khanchi, A. & S.J. Birrell. 2015. Influence of weather and swath density on drying characteristics of corn stover. ASABE Paper No. 2190753. 2015 ASABE Annual International Meeting Am. Soc. of Agric. Engineers, St. Joseph, MI. doi: 10.13031/aim.20152190753. St. Joseph, Mich.: ASABE.
Lacy, N.C. & K.J. Shinners. 2016. Reshaping and recompressing round biomass bales. Trans ASABE. 59(4):795-802. doi:10.13031/trans.59.11778.
Shinners, K.J. & Friede, J.C. (2013). Improving the drying rate of switchgrass. ASABE Technical Paper No. 1591968.
Shinners, K.J. & Friede, J.C. (2013). Energy requirements for at-harvest or on-farm size-reduction of biomass. ASABE Technical Paper No. 1591983.
Shinners, K.J. & Friede, J.C., & Kraus, J. & Anstey, D. (2013). Improving bale handling logistics by strategic bale placement. ASABE Technical Paper No. 1591987.
Khanchi, A. & S.J. Birrell, 2017. Effect of rainfall and swath density on dry matter and composition change during drying of switchgrass and corn stover. Biosystems Engineering 153:42-51.
Sharma, B., E. Brandes, A. Khanchi, S. Birrell, E. Heaton & F. E. Miguez. 2015. Evaluation of Microalgae Biofuel Production Potential and Cultivation Sites Using Geographic Information Systems: A Review. BioEnergy Res. 8(4):1714–1734. doi: 10.1007/s12155-015-9623-0
Schmer MR, Vogel KP, Varvel GE, Follett RF, Mitchell RB, et al. (2014) Energy Potential and Greenhouse Gas Emissions from Bioenergy Cropping Systems on Marginally Productive Cropland. PLoS ONE 9(3): e89501. DOI: 10.1371/journal.pone.0089501
Schilling, K., Gassman, P., Kling, C. T. Campbell, M. Jha, C. Wolter, & J. Arnold. (2103). The Potential for Agricultural Land Use Change to Reduce Flood Risk in a Large Watershed. Hydrological Processes (2013), wileyonlinelibrary.com, DOI: 10.1002/hyp.9865.
Rabotyagov, S., Kling, C.L., Gassman, P., Rabalais, N. & Turner, R. (2014). The Economics of Dead Zones: Causes, Impacts, Policy Challenges, and a Model of the Gulf of Mexico Hypoxic Zone. Review of Environmental Economics and Policy, published online Jan. 5, 2014 DOI:10.1093/reep/ret024
Keeler B., Krohn, B., Nickerson, T. & Hill, J. (2014). U.S. Federal agency models offer different visions for achieving Renewable Fuel Standard (RFS2) biofuel volumes.Environ. Sci. Technol. (2013) 47: 10095–10101. DOI: 10.1021/es402181y. (Cover Feature)
Panagopoulos, Y., Gassman, P., Arritt, R., Herzmann, D., Campbell, T., Jha, M., Kling, C.L., Srinivasan, R., White, M. & Arnold, J. (2014). Surface Water Quality and Cropping Systems Sustainability under a Changing Climate in the Upper Mississippi River Basin. Journal of Soil and Water Conservation 69:483-494. DOI: 10.2489/jswc.69.6.483.
Rabotyagov, S., Valcu, A. & Kling, C.L. (2014). Reversing the Property Rights: Practice-Based Approaches for Controlling Agricultural Nonpoint-Source Water Pollution When Emissions Aggregate Nonlinearly. American Journal of Agricultural Economics96 (2): 397-419. DOI 10.1093/ajae/aat094.
Module 5. Feedstock Conversion and Biofuels Co-Product
Allen, R.M. & Laird, D.A. (2013). Quantitative prediction of biochar soil amendments by near-infrared reflectance spectroscopy. Soil Science Society of America Journal. 77:1784-1794.
Brown, T. R., Thilakaratne, R., Brown, R. C., & Hu, G. (2013). Techno-economic analysis of biomass to transportation fuels and electricity via fast pyrolysis and hydroprocessing. Fuel 106, 463–469, http://dx.doi.org/10.1016/j.fuel.2012.11.029.
Brown, T. & Brown, R. C. (2013). A review of cellulosic biofuel commercial-scale projects in the United States. Biofuels, Bioproducts & Biorefineries 7, 235-245. DOI: 10.1002/bbb.1387.
Brown, T. & Brown, R. C. (2013). Techno-economics of advanced biofuels pathways. Royal Society of Chemistry Advances 3 (17), 5758 – 5764, DOI: 10.1039/C2RA23369J.
Fidel, R.B., Laird, D.A. & Thompson, M.L. (2013). Evaluation of Modified Boehm Titration Methods for Use with Biochars. Journal of Environmental Quality. 42:1771-1778.
Kauffman, N., J. Dumortier, D.J. Hayes, R.C. Brown, and D.A. Laird. 2014. Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity. Biomass and Bioenergy. 63:167-176.
Thilakaratne, R., Brown, T., Li, Y., Hu, G., & Brown R.C. (2014). Mild catalytic pyrolysis of biomass for production of transportation fuels: a techno-economic analysis. Green Chemistry, DOI: 10.1039/C3GC41314D.
Zhang, Y., Hu, G., & Brown, R. C. (2013). Life cycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis. Environ. Res. Lett. 8, 025001 doi:10.1088/1748-9326/8/2/025001.
Module 6. Markets and Distribution
Emerging newly planted switchgrass on a rolling Tennessee landscape. Photo: University of Tennessee.
Kauffman, N., Dumortier, J., Hayes, D.J. Brown, R.C. & Laird, D.A. “Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity. Forthcoming in Biomass and Bioenergy.
Kauffman, N. & Hayes, D. (2013)The Trade-off between Bioenergy and Emissions with Land Constraints. Energy Policy 54, 300-310, 2013.
Jacobs, K. Perennial Grasses for Bioenergy in the Central United States: Updates on Economics and Research Progress. 2013 ICM Conference Proceedings, Iowa State University.
Module 7. Health and Safety
Switchgrass baling on steep marginal land presents a rollover hazard. Photo: Douglas Schaufler, Penn State.
Yoder, A.M., C. V. Schwab, P. D. Gunderson, and D. J. Murphy. 2013. Safety and Health in Biomass Production, Transportation and Storage. Journal of Agromedicine. DOI: 10.1080/1059924X.2014.886539.
Ryan, S. J., C. V. Schwab, and G. A. Mosher. 2015. Development of a probabilistic risk assessment model to measure the difference in Safety risk of corn and biofuel switchgrass farming systems. Journal of Agricultural Safety and Health (Submitted).
Technical Papers
Ryan, S. J., C. V. Schwab, and G. A. Mosher. 2015. Agricultural Risk: Development of a probabilistic risk assessment model for measurement of the difference in risk of corn and biofuel switchgrass farming systems. International Society for Agricultural Safety and Health summer conference Bloomington-Normal, Illinois. ISASH Paper No. 15-01. ISASH Urbana, IL 61801.
Yoder Aaron M., D.J. Murphy, and A.F. DeHart. 2013. A Technical Review on Safety in On-Farm Biomass Production and Storage Systems: Status and Industry Needs. American Society of Agricultural and Biological Engineers. Technical Paper No. 1620568.
"Formal" Educational Programs and Curriculum
In order to prepare the next generation of workers for the emerging bioeconomy, CenUSA is providing interdisciplinary training and engagement opportunities for undergraduate and graduate students; and developing a bioenergy curriculum core for the Central region of the United States.
BLADES Newsletter - your source for the latest information on grass-based bioenergy research, policy and industry breakthroughs, innovative educational programs and upcoming events.