Estimating Ammonia Emissions from Livestock Operations Using Low-Cost, Time-Averaged Concentration Measurements

Animal Manure Management November 14, 2013 Print Friendly and PDF

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings....

Abstract

Recent regulations on ammonia (NH3) and other gaseous emissions by the EPA requires managers of animal feeding operations (AFOs) to report their annual emissions of greenhouse gases (GHGs), with the possibility of federal funding in the near future to be allocated for enforcement of GHG reporting as well as to levy large fines against AFOs that exceed the regulation limitations for GHG emissions. The current method of estimating NH3 emissions for AFOs is a “back of the envelope” type calculation based upon population and type of animal within an individual AFO.

Emissions of NH3 can vary drastically depending on climate, soil type, location, and other factors. This causes a need for accurate, nearly continuous, on-site measurements of NH3, which can be difficult to disseminate to and implement in an economically beneficial way by individual AFO facilities required to report NH3. Here we outline a robotic system developed for the measurement of NH3 that is cost-efficient to employ and easy to maintain while providing accurate year-round data on NH3 emissions. The system utilizes diffusive/passive samplers (e.g., Radiello, Sigma-Aldrich distributor) that are exposed to the environment under user-defined weather conditions which will yield observations of NH3 concentrations for a period representing several weeks. Measurement data from the robotic systems can be easily converted to accurate emissions estimates by using an inverse model (e.g., using a simple software package).

Data from the passive samplers will be shown for multiple sites and years of data acquired during extensive field testing of the robotic samplers at dairy and cattle feedlot operations in northeastern Colorado from 2011-2012. Emissions obtained using a simple inverse model on the data will be shown as well.

Authors

Kira Shonkwiler, Colorado State University, Dept of Atmospheric Science kshonk@atmos.colostate.edu

Dr. Jay Ham, Colorado State University, Dept of Soil and Crop Sciences, Christina Williams, Colorado State University, Dept of Soil and Crop Sciences

 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.

Connect with us

  • Twitter
  • Facebook
  • YouTube

Welcome

This is where you can find research-based information from America's land-grant universities enabled by eXtension.org

LOCATE

USDA / NIFA

This work is supported by the USDA National Institute of Food and Agriculture, New Technologies for Ag Extension project.