Potential Air Quality Impacts of Anaerobic Digestion Of Dairy Manure

Animal Manure Management November 13, 2013 Print Friendly and PDF

Waste to Worth: Spreading science and solutions logoWaste to Worth home | More proceedings....

Abstract

Anaerobic digestion (AD) of livestock manure is better known for the economic return derived from biogas for energy rather than for its, inherent, environmental benefits. The effect of AD of dairy manure on the emissions of odor, ammonia (NH3), and greenhouse gases (GHG) including: carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4), during manure storage and also in subsequent land applications will be presented.  Air samples were collected in 10-L Tedlar bags, at pertinent locations within the AD system, and shipped immediately to the lab for odor analyses by a trained odor panel using the “Dynamic Dilution Forced-choice Olfactometer.” Measurements of GHG emissions from both AD and non-AD manure storages were made using a floating chamber and a photoacoustic gas analyzer (INNOVA model 1412).  Emissions of GHG were determined using the standard closed chamber method from field plots applied with AD and non-AD manure. Although odor analyses of collected air samples indicated increased detection threshold (D/T), odor strength (intensity) and unpleasantness (hedonic tone) decreased after AD of manure. Data indicated significantly higher fluxes of GHG from land applied with non-AD manure than from land applied with AD manure. Injection of non-AD manure further increased CH4 flux from applied manure. More than 50% emissions of CO2 and CH4 were observed during the first 3 days after manure was land applied. Emissions of GHG from the anaerobic lagoon holding AD manure, during all four seasons, were significantly lower than from the anaerobic lagoon with non-AD manure. In contrast, the reverse was observed with NH3 emissions suggesting potential increased emissions of NH3 during storage of post AD manure.

Authors

Pius Ndegwa, Washington State University          ndegwa@wsu.edu

H.S. Joo, Biological Systems Engineering, Washington State University, PO Box 646120, Pullman, WA 99164; J.H. Harrison, E. Whitefield, Animal Sciences, Washington State University, 2606 West Pioneer, Puyallup, WA 98371; A.J. Heber, J.Q. Ni, Agricultural & Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907

 

The authors are solely responsible for the content of these proceedings. The technical information does not necessarily reflect the official position of the sponsoring agencies or institutions represented by planning committee members, and inclusion and distribution herein does not constitute an endorsement of views expressed by the same. Printed materials included herein are not refereed publications. Citations should appear as follows. EXAMPLE: Authors. 2013. Title of presentation. Waste to Worth: Spreading Science and Solutions. Denver, CO. April 1-5, 2013. URL of this page. Accessed on: today’s date.

Connect with us

  • Twitter
  • Facebook
  • YouTube

Welcome

This is where you can find research-based information from America's land-grant universities enabled by eXtension.org

LOCATE

USDA / NIFA

This work is supported by the USDA National Institute of Food and Agriculture, New Technologies for Ag Extension project.