Biofuels and Greenhouse Gas Reductions

Farm Energy January 28, 2014 Print Friendly and PDF

Can we reduce greenhouse gases with biofuels? Explore biofuels, the carbon cycle and potential impacts.

Palm oil plantation, in Indonesia. Photo: Achmad Rabin Taim; Wikimedia Commons.

Table of Contents

Biofuels and the Carbon Cycle

From the standpoint of human-released carbon dioxide, other greenhouse gas emissions, and contributions to climate change biofuels have one large advantage over gasoline, diesel and other fossil fuels: The feedstocks for biofuels are part of the above-ground carbon cycle. Unlike petroleum or coal, the soybeans, corn, switchgrass and other biological materials that are made into biofuels are not dug up from underground, nor do they release long-stored carbon as carbon dioxide into the atmosphere when burned. Instead, when biofuels are burned, carbon dioxide they recently captured is release back into the atmosphere.

This carbon cycle diagram shows the storage and annual exchange of carbon between the atmosphere, hydrosphere and geosphere in gigatons - or billions of tons - of carbon (GtC). Burning fossil fuels adds about 5.5 GtC of carbon per year into the atmosphere. Carbon released by burning biofuels is partly balanced by carbon fixed during biofuel feedstock growth. NASA image

 

This advantage has sometimes been exaggerated into the claim that biodiesel, ethanol and other biofuels are carbon neutral. Unfortunately, this is not always true. For example, fossil fuels that release carbon dioxide are used in farming, fertilizer production, transportation and many aspects of biofuel processing during the full life cycle of most biofuels.

 

Indirect Land Use Impacts of Biofuels

Cropping changes, the conversion of forests into cropland and other land-use changes connected with the growing of biofuel crops all have greenhouse gas, and thus climate change implications. Worldwide land-use patterns can be affected by small variations in commodity prices, and these effects need to be considered in a full life-cycle analysis.


Two articles in the February 2008 issue of the journal Science called widespread attention to these so-called indirect land use impacts of biofuels. (See Fargione et al, 2008 and Searchinger et al, 2008.)


The study of indirect land-use impacts is in its infancy, and predictions and measurements of these impacts are highly uncertain. Biotech companies and others have claimed that crop yield improvements will reduce greenhouse gas emissions by making farmland more productive, meeting the world’s food and fuel needs with fewer acres, and reducing pressure to convert forests to farmland. In an ideal world this might all be true. But in the real world, land use change is driven by complex economic, social and political forces. Productivity is only one factor.

Differences among Biofuels

Various efforts have begun to evaluate the sustainability of biofuel production systems. For example, some groups are working to create third-party certification standards, reflecting a growing awareness that there are great differences among the greenhouse gas footprints and other environmental and social impacts of biofuels. In one extreme and widely publicized example, the clearing and burning of rainforests for oil palm plantations in Indonesia is alleged to have caused enormous releases of carbon dioxide and other greenhouse gases as well as other serious environmental problems. At the other end of the spectrum, fuel made from waste vegetable oil or spoiled grain typically causes few concerns.


Estimating the net effect of any given biofuel on atmospheric greenhouse gas levels or climate change requires extremely complicated calculations with many debatable assumptions. Many of the analyses to date have concluded that grain ethanol, biodiesel, and especially cellulosic ethanol substantially reduce greenhouse gas emissions, in comparison to gasoline and diesel. Other researchers have called these results into question, however. (See, for example, Pimentel and Patzek, 2005.) Despite these different views, it is clear that biofuels are most likely to contribute to greenhouse gas reductions if they are produced with a minimum of fossil energy inputs and without significant land use changes.

References

Joseph Fargione, Jason Hill, David Tilman, Stephen Polasky, Peter Hawthorne, "Land Clearing and the Biofuel Carbon Debt," Science Express (February 7, 2008)

Timothy Searchinger, Ralph Heimlich, R. A. Houghton, Fengxia Dong, Amani Elobeid, Jacinto Fabiosa, Simla Tokgoz, Dermot Hayes, Tun-Hsiang Yu, "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land Use Change," Science Express (February 7, 2008)

Pimentel, D. and T.W. Patzek 2005, "Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower." Natural Resources Research 14: 65-76

More Topics on Biofuels and Greenhouse Gases

Environmental Life Cycle Analysis of Biodiesel

Indirect Land Use Impacts of Biofuels

For More Information

  • Roundtable on Sustainable Biofuels -- An international initiative based in Switzerland, the RSB has developed biofuels sustainability standards and is working towards a third-party certification system.
  • Sustainable Biodiesel Alliance -- This Texas-based organization promotes environmental, social and economic sustainability of biodiesel. They aim to create certification for sustainability in biodiesel.

Contributors

Authors

  • Mike Morris, National Center For Appropriate Technology (ATTRA)
  • Eli Mangold, Univ. of Connecticut
  • Diana Friedman, SARE

Peer Reviewers

Connect with us

  • Twitter
  • Facebook
  • Google+

Welcome

This is where you can find research-based information from America's land-grant universities enabled by eXtension.org

LOCATE

USDA / NIFA

This work is supported by the USDA National Institute of Food and Agriculture, New Technologies for Ag Extension project.